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Abstract

This paper 1s concerned with the design and probabilistic analysis of algorithms for the maximum-
flow problem and capacitated transportation problems. These algorithms run in linear time and, under
certain assumptions about the probability distribution of edge capacities, obtain an optimal solution
with high probability. The design of our algorithms is based on the following general method, which we
call the mimicking method, for solving problems in which some of the input data is deterministic and

some 1s random with a known distribution:

1. Replace each random variable in the problem by its expectation; this gives a deterministic problem

instance that has a special form, making it particularly easy to solve;
2. Solve the resulting deterministic problem instance;

3. Taking into account the actual values of the random variables, mimic the solution of the determin-

istic instance to obtain a near-optimal solution to the original problem:;
4. Fine-tune this suboptimal solution to obtain an optimal solution.

We present linear time algorithms to compute a feasible flow in directed and undirected capacitated
transportation problem instances. The algorithms are shown to be successful with high probability
when the probability distribution of the input data satisfies certain assumptions. We also consider
the maximum flow problem with multiple sources and sinks. We show that with high probability the
minimum cut isolates either the sources or the sinks, and we give a linear-time algorithm that produces

a maximum flow with high probability.
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1 Introduction

Probabilistic analysis of combinatorial problems has been the subject of many recent investigations [KLMR].
The starting point for such analysis is the assumption that the problem instances are drawn from a prob-
ability distribution. Under this assumption one studies the behavior of the solution to the combinatorial
problem or the performance of some algorithm. The analysis often establishes that certain quick-but-dirty
algorithms produce optimal or near-optimal solutions with high probability. In this paper we will be

concerned with devising quick-but-dirty algorithms of this type for some combinatorial problems.

The problems considered here are all closely related to the maximum flow problem. In particular, we
present fast (linear time) algorithms for the maximum flow problem and certain versions of the trans-
portation problem; these algorithms are guaranteed to succeed with high probability if the probability
distribution of the inputs satisfies certain assumptions. A key part of our work is the formulation and
application of a new technique for solving problems with probabilistic inputs. We call this technique the

probabilistic mimicking of deterministic solutions. The mimicking paradigm works as follows:

STAGE 1 (Deterministic Relaxation) Suppose we are given a problem instance P()?7 )7) with param-
eters (or input) X and Y. The vector X represents the random values and the vector Y represents
the deterministic values. Construct a deterministic relaxation of PP by replacing each random variable

—

by its expected value. We now have a deterministic problem instance P(Exp[X], )7)

STAGE 2 (Solution of Deterministic Relaxation) Construct a solution to the new problem instance

P(EXp[X],)_}). This instance is typically of a special form for which a highly efficient algorithm is

available.

STAGE 3 (Mimicking Process) Construct a solution to the original problem instance P()?,?) by
mimicking the solution constructed in the previous step. The exact form of the mimicking process
will depend on the problem under consideration. The idea is to use the solution of the deterministic

relaxation as a guide in solving the original problem instance.

STAGE 4 (Fine Tuning) In this stage we fine-tune the solution obtained in the previous stage to come
up with an optimal solution to the original problem instance. The fine-tuning process is highly
efficient because, with high probability, the solution resulting from the mimicking process is already

close to the optimal.

The paper is organized as follows. The rest of this section is devoted to the definition of the problems
under consideration and a brief discussion of our results, as well as their relation to the previous work in
this area. In Section 2 we present some preliminary results which will prove useful in deriving our main
theorems. In particular, we will describe a fine tuning algorithm which will implement the last stage of our
paradigm. In Section 3 we present algorithms for the undirected transportation problem and the max-flow
problem. In Section 4 we present an algorithm for the directed transportation problem. Finally, in Section

5, we discuss further work along these lines.
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1.1 Problem Definitions

We start by defining the three problems under consideration. These are the Maximum Flow Problem,
the Supply Demand Problem and the Capacitated Transportation Problem. We also present the classic
minmax theorems associated with each of these problems (see [La] for more details). The problems are
defined for the case of directed graphs (digraphs) only. These definitions apply to undirected cases also if

we look upon each undirected edge (u,v) as representing the two directed edges (u,v) and (v, u).

Maximum Flow Problem: Let G be a digraph with vertices V= SU T UT, where S represents the
source vertices, T represents the sink vertices and I represents the intermediate vertices. Let F represent
the set of directed arcs in the digraph G. A capacity function, ¢ : E — R, assigns a non-negative real
number ¢(u,v) to every arc (u,v) in F. An instance of the max-flow problem consists of a digraph D and

a capacity function c.

Given an instance of a max-flow problem a function, f : £ — %7, is called a flow function if it satisfies

the following constraints,

0 < f(u,v) < c(u,v), Y(u,v) € E
Yo floywy= D> flww),  Yvel

(vw)eE (ww)eE
Let f(A,B) = 3 ,capep f(a,b) where A, B C V. The value of a flow function, val(f), can be defined as
follows,

val(f) = f(S,V—=9)— f(V-=5,8)=f(V-T,T)- f(I,V-T)
The max-flow problem is to find a maximum-value flow function on a given instance of a flow problem.

This problem has been studied quite extensively and the fastest known algorithm is due to Alon [Al]
(see also [GT, CH]) which runs in O(nmlogn) time, where n = |V| and m = |F|. In the case of dense
graphs the best max-flow algorithm known requires O(n?) time. We assume that the reader is familiar
with the basic theory of network flows. This includes the notion of a cut and the capacity of a cut, as well

as the following theorem.

Theorem 1.1 (Max-flow Min-cut Theorem) The mazimum value of an (S,T)-flow is equal to the

minimum capacity of an (S, T)-cut.

Supply-Demand Problem: An instance of the supply-demand problem consists of a digraph G(V, F)
and a capacity function ¢ as before, and also a collection of supplies and demands associated with the
sources and the sinks, respectively. Associated with every source vertex s € 5 is a non-negative number
as called the supply at s. Similarly, associated with every sink vertex ¢ € T is a non-negative number b,
called the demand at t. The supply-demand problem is to find a feasible flow, viz. a flow which meets the
demands at T from the supplies available at S. More formally, we are looking for a flow f : F — Rt which

satisfies the following conditions,

0 < f(u,v) < c(u,v), Vu,v eV
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f(s,V—=As}) = f(V = {s},s) < as, Vse S
flo,V—A{v}) = f(V —{v},v)=0, Yvel
fV A )= fe,V-A{t}) =b,  VLeT

Let a(X) = S ,cx a» when X C S, similarly define b(X) = 3 ,cx b, for X C T. Let ¢(X, X) denote
the capacity of the (X, X) cut in G. The following theorem [La] gives necessary and sufficient conditions

for a feasible flow to exist in an instance of the supply-demand problem.

Theorem 1.2 (Supply-Demand Theorem) A feasible flow exists in the supply-demand problem if and
only if the following inequality holds for every subset X C V.

BT NX)—a(SNX) < (X, X)

This theorem requires that for every X C V the excess of demands over supplies in X must be less
than the total capacity of the edges leading out of X. There is an easy transformation from an instance of

a supply-demand problem to an instance of a max-flow problem and vice versa.

Capacitated Transportation Problem: The capacitated transportation problem is a special case of
the supply-demand problem. In this problem we have no intermediate vertices, i.e. I = (), and the graph
is bipartite between S and T'. We will only consider the cases where the sum of all the supplies is equal to
the sum of all the demands. The Supply-Demand Theorem when applied to the transportation problem
yields the following.

Theorem 1.3 (Transportation Theorem:) A feasible flow exists in an instance of the transportation

problem if and only if the following condition holds for every subset X C S.

Z a, < Zmin(bt7C(X7 {t}))

z€X teT
Probabilistic Formulation: For each of these problems we will make two probabilistic assumptions:

1. each edge is present in the graph with probability p(n), independent of the other edges.

2. the capacities of the edges are i.i.d. random variables which have bounded support.

In certain cases the probabilistic assumptions will only apply to some subset of the edges in the complete
graph. For example, we will assume that a certain subset of the edges is always present (or absent) while
the rest satisfy the first probabilistic assumption. We will also consider the case where certain edges have

fixed (or deterministic) capacities while the rest satisfy the second probabilistic assumption.

1.2 Previous Work and Main Results

The study of random graphs was initiated by Erddés and Rényi in 1959 [ER1]. The theory of random

graphs-is-concerned-with-graphs-drawn from certain probability spaces. A well-studied random graph
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[Bo] is called G, ,, where n is a positive integer and 0 < p(n) < 1. The probability space consists of all
graphs on the vertex set V = {1,2,---n}. In the graph G, ,, the probability that an edge is present is p
independently for each edge. In other words, the probability of any graph with e edges is p®(1 — p)¥—°,
where N = n(n — 1)/2. Similarly, we define the random graph B, , which is chosen from the space of
all bipartite graphs on the vertex set V.= SUT, where |S| = |T| = n. Independently for each edge, the

probability that the graph B, , contains that edge is p.

We shall require methods for finding perfect matchings in random graphs. A perfect matching in an
undirected graph G = (V, E) is a spanning subgraph in which each vertex in V' has degree one. Consider
an instance of the transportation problem in which the underlying bipartite graph has all its edges directed
from the sources to the sinks. The problem of finding a perfect matching in a bipartite graph is the special
case of this directed transportation problem where all the supplies, demands and capacities are set to
one. The problem of finding a perfect matching in a random bipartite graph B, , is a special case of the
probabilistic transportation problem. Erdés and Rényi [ER2, ER3] proved the following theorem about

the existence of perfect matchings in random bipartite graphs.

Theorem 1.4 Let p(n) = h;”_"ic, where ¢ is some constant. Then, for B = B, ,,

1i_>m Prob[B has a perfect matching] = e=2¢"

Angluin & Valiant [AV] gave a fast algorithm, called the Proposal Algorithm, to construct a bipartite
matching. This algorithm works in O(nlogn) time and, with high probability, constructs a perfect matching
in a random bipartite graph, provided that p(n) is large enough. They obtained the following result.

Theorem 1.5 For all o > 0, there exists § > 0 such that if p(n) > m—zgﬂ then, for B = B,, ,,

Prob[Proposal Algorithm fails on Bl = O(n™)

Goldschmidt & Hochbaum [GH] gave a greedy algorithm which improves upon the running time of the
Proposal Algorithm. The greedy algorithm works for random graphs where p > vyInn/n and, with high
probability, computes a perfect matching in time O(n log Zl)) This algorithm uses the Proposal Algorithm
as a sub-routine and the constant + is larger than the constant in the result of Angluin & Valiant. However,
unlike the Proposal Algorithm, the greedy algorithm has a running time which decreases with increasing
density of the random graph. A different type of result was obtained by Motwani [Mol, Mo2] who showed
that the O(y/nm) algorithms for bipartite and non-bipartite matchings perform exceedingly well when the
input is a random graph. In particular, it was shown that if the input random graph has p(n) > logn/n
then these deterministic matching algorithms terminate in time O(mlogn/log(np)) time. Even though this
running time is strictly greater than that of the Proposal Algorithm or the Greedy Algorithm, these results

apply to a wider class of random graphs.

Consider now the Max-Flow problem where |S| = |T'| = 1 and the edge capacities are i.i.d. random
variables. This problem was considered earlier by Frank & Hakimi [FrHa] and Frank & Frisch [FrEr]. They

studied the random variable val( f) under the above assumptions and obtained results about its probability
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distribution. Karp [Ka], Grimmett & Welsh [GW] and Grimmett & Suen [GS] obtained strong asymptotic
results for complete graphs with i.i.d. edge capacities. In particular, they showed that the minimum cut
is almost surely the set of edges incident on the source or those incident on the sink. These results are all

existential and do not yield any fast algorithms to construct the maximum flow.

Doulliez & Jamoulle [DJ] proposed a decomposition method to determine the existence of a feasible
flow in an instance of the transportation problem when the edge capacities are i.i.d. random variables.
There are also results concerning bounds on the probability of existence of a feasible flow in probabilistic
transportation problems [PB]. Hassin & Zemel [HZ] studied the probabilistic version of the transportation
problem where the underlying graph is complete and the edge capacities are random variables. A collection
of random variables {c; : k € K} is said to be proper with respect to a constant « if for each y > 0 and
each k € K, Proble; > y | S] < ay. Here S represents any conditioning event concerning the variables
{¢;: 1 € K, | # k}. Hassin & Zemel considered the case where the edge capacities form a proper collection
and the supplies/demands are bounded from above. In effect, the “properness” condition requires that
each edge capacity be positive. This means that the underlying graph must be complete. Under these
assumptions, they presented an algorithm which, with high probability, computes a feasible flow in linear
time. Hochbaum [Ho] studied the 0/1 maximum flow problem under the assumption that the underlying
graph is chosen from G, ,, where p(n) = Q(y/nlogn/n). Since all edge capacities are either 0 or 1, this
problem is equivalent to that of finding a maximum collection of vertex-disjoint paths from source to
sinks. Hochbaum presented a sublinear time heuristic algorithm which, with high probability, computes a

maximum flow in the random instances described above.

Our main results are as follows (some of these results are from the second author’s dissertation [Mol]).
We first consider the undirected transportation problem where the edge capacities are random variables
and there is a bound on the size of the supplies/demands. We also consider the directed transportation
problem where the edge capacities are random variables and the supplies/demands satisfy a realizability
condition. For both kinds of transportation problems we present linear time algorithms which compute a
feasible flow with high probability. We look at the max-flow problem where the edge capacities are i.i.d.
random variables. Here we show that the minimum cut is almost surely the cut isolating the sources or
the sinks. Again, we present a linear time algorithm that solves such max-flow problem instances, with
high probability. Our results are essentially the best possible under the natural probabilistic assumptions
being made. For example, in the case of the transportation problems we assume that the demand at a
node is smaller than the expected capacity of the edges coming into it by a small factor (roughly logn).
For significantly larger demands it is not possible to guarantee that the problem has a feasible solution

with reasonably high probability.

2 Preliminaries
In this section we describe two special cases of the flow problems under consideration. The first problem

is concerned with the supply-demand problem in a non-probabilistic setting where all capacities are 0/1.

The-second-problem is-a-special-case which arises in the last stage of our mimicking paradigm, viz. the
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fine-tuning stage. We present an algorithm for handling this version of the problem.

2.1 Realization of 0/1 Matrices

The following notion of realizability of 0/1 matrices will prove useful in the description of our algorithms.
Let R = (r1,7r2,...1m) and C' = (¢q, ¢z, ...¢,) denote two vectors with non-negative integral entries. The
pair (R, (') is said to be realizable if and only if there exists a 0/1 m X n matrix M = M (R, (') with R and
C' as its row-sum and column-sum vectors, respectively. The matrix M (R, C') is called a realization of the
pair (R, (). The realizability problem is to compute the realization of a pair of row-sum and column-sum

vectors.

The realizability problem is closely related to the capacitated transportation problem. Consider in-
stances of the transportation problem where the underlying bipartite graph is complete with all edges
directed from S to T and of capacity one. It is easily seen that finding a feasible flow in such trans-
portation problem instances with the integral supply-demand vectors (A, B) is equivalent to finding the
realization of the pair (A, B). Ryser [Ry] and Gale [Ga] gave necessary and sufficient conditions for a pair
(R,C) to be realizable. There is a simple greedy algorithm [FoFu, FR, Ga] to construct the realization

matrix provided it is feasible. This algorithm works in linear time.

A variant of the realization problem is where all the diagonal entries in the matrix are unbounded
(positive integers) and while the off-diagonal entries are required to be 0/1. Let M (R,C) denote a
realization of the row and column sums as a matrix where the diagonal entries are unbounded. Motwani

[Mo3] provided a nearly-linear time algorithm to construct M., (R, C'), when feasible.

Another notion of realizability will also be used in our algorithms. Let R and C' be as before. Also,
let R=R— D.Iand C =C — D.I, where D is a positive integer and 1 represents the vector with a 1 in
each entry. The pair (R, C) is said to be D-realizable if the pair (R, C) is realizable. Finally, we will call
a pair (R,C) as being (D, oo)-realizable if the pair (R — D.T,C' — D.1) has a realization with unbounded
diagonals. A D-realization of the pair (R, () will be denoted by Mp(R,C) = M(R,C).

2.2 A Fine-Tuning Algorithm

The final stage of our mimicking paradigm involves the fine tuning of the solution obtained by the mim-
icking process. The algorithm described below will be used for this purpose. Consider an instance of the
transportation problem with the underlying undirected bipartite graph G(SUT, F) satisfying the following

conditions.

(a). 18] = 7| =n

(b). foreach: € Sand j € T, the supply a; and the demand b; are positive integers such that 0 < L(n) < ¢;

and b; < U(n) < ﬁgéz)

(€). Dicgai =3 ic7bj
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(d). each edge, independently, is present with probability p(n) and has capacity 1

Here L denotes some arbitrary function of n. Note the above conditions imply that 0 < L, U < n/logn;
for supplies and demands much larger than this it is impossible to guarantee that a feasible solution exists
with high probability.

The following algorithm uses the Proposal Algorithm [AV] as a sub-routine. It first decomposes the
transportation problem instance into U(n) instances of the matching problem for random bipartite graphs.
The algorithm constructs U(n) bipartite graphs ensuring that each vertex occurs in exactly as many of
these graphs as its supply or demand. The edges from the graph G are equiprobably distributed among
the U(n) subgraphs. It is shown that, with high probability, the Proposal Algorithm will find a perfect
matching in each of these subgraphs. The algorithm sends one unit of flow along each edge which is in the

union of the perfect matchings found by the Proposal Algorithm. This is the required flow.
Let A; = 23:1 a, and B; = Eizl b,, where Ag = By = 0.

The Fine Tuning Algorithm

Step (1). Construct U bipartite graphs G°,...GY~! with vertex sets S°,...SY~! and TY,...TV=" as
follows. Place each vertex s; € S in the vertex sets S(Ai-1+1) mod U .54 mod U, Similarly, place

cach vertex ¢; € T in the vertex sets T(Fi-1+1) mod v ... T8 mod

Step (2). Color each edge (s;,t;) € I independently and equiprobably with one of U colors.
Step (3). For each edge (s;,t;) € E, place it in E(G¥) if and only if it has color k and s; € S*, t; € T*.

Step (4). Using the Proposal Algorithm, find a perfect matching in each of the U subgraphs generated
in the previous steps. Let F' C F denote the union of the U perfect matchings.

Step (5). Saturate in the forward direction all the edges in F. This flow will be a feasible solution to the

transportation problem instance under consideration.

The following theorem results.

Theorem 2.1 (Fine-Tuning Theorem) For all o > 0, there exists § > 0 such that p(n) > %
implies that the Fine-Tuning Algorithm finds a feasible flow in the transportation problem instance in

O(n?) time with probability 1 — O(U(%)a).

Proof: The following claims will constitute the proof of this theorem. First, note that our construction
ensures that the number of sources and sinks is equal in each of the U graphs being constructed. Let nyg

denote the number of sources or the number of sinks in the graph G*, i.e. nj = |S*| = |T*|.
Claim 2.1 L%J <ni<n, Vke[0,U-1].

The validity of Claim 2.1 is established as follows. Clearly, the number of source nodes in each graph G*
is at least LAT"J, where A, is the sum of all the supplies. By condition (b), we have that A, must be at

least-nl-and-this-implies-the.desired result. A similar argument works for the case of the sink vertices.
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Claim 2.2 lim,,_,o, N} = 00.

Claim 2.2 is proved as follows. By Claim 2.1 and condition (b), we have that ny is at least [2Z]. We
are also given that U < ,/l:gLn. We conclude that ny > nL/U > Ulogn. Since U > 0, the desired result

follows. The next claim follows from the construction described in Step (1).

Claim 2.3 Fach s; (t;) occurs once each in exactly a; (b;) of the U subgraphs constructed in Step (1).

It is clear that in each of the U subgraphs the edges are present independently of other edges in the same
subgraph although there is dependence between two such subgraphs. Let pp be the probability that an
edge is present in the graph G*. We are given that p(n) > %. Since each edge is placed in one of U

graphs chosen uniformly at random, we have the following claim.

Claim 2.4 py = H) > plesne,

The Proposal Algorithm will succeed in finding a perfect matching in G* in O(nlogn) time with prob-
ability 1 — O ((%)a), when pg > %ﬂ The relation between « and (3 is the same as for the Proposal
Algorithm. The probability that the Proposal Algorithm does not succeed on all G* is bounded from above
by the sum of the probabilities of failure on each of the U matching problems. This probability can be
seen to be suitably bounded.

The running time of the entire process can be determined as follows. Step (1) takes time O(Un) and
this is clearly O(n?). Since the number if edges is at most n?, Step (2) takes time O(n?). Each call to
the Proposal Algorithm takes time O(nlogn) and there are at most U(n) < n/logn such calls. Thus, Step
(3) also takes time O(n?). The time required for Step (4) is proportional to the total supply at the source
nodes. This quantity is O(n?).

i

We make two remarks about the generality of this algorithm. First, note that the algorithm uses each
edge in the forward direction only. The algorithm would work equally well in the case where the edges
are directed, though it would not send any flow along edges which are directed from 7 to S. Also, the
algorithm does not actually require that |S| = |T'| = n. A careful examination of the proof shows that it

would be sufficient to have [Z)l(off < |S],|T| < n, where n is now the size of the larger of the two vertex

sets. We need to impose these bounds on the sizes of S and 7' to ensure that ny (in Claim 2.1) cannot be

too small or too large.

We could have used the Greedy Algorithm due to Goldschmidt & Hochbaum [GH] instead of the
Proposal Algorithm to obtain the Fine Tuning Algorithm. In fact, as the analysis of Motwani [Mo2] shows,
we could have used Dinic’s algorithm [Di] for bipartite matchings as well. Using the Greedy Algorithm
will, in general, improve the running time of the Fine Tuning Algorithm described above. However, it turns
out that in the applications of the Fine Tuning Algorithm described in later sections the overall running
times are not affected by the use of the Greedy Algorithm instead of the Proposal Algorithm. The use of
Dinic’s algorithm would have allowed us to apply the Fine Tuning Algorithm to graphs with even smaller

density. Again, this is not really required in the algorithms which will be presented below.
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3 The Undirected Transportation Problem

We now present an algorithm to solve certain instances of the transportation problem where the underlying

il

graph is undirected. Let D(n) be a positive function such that D(n) < N Consider an instance of

the transportation problem which satisfies the following conditions.

(a). the underlying graph G/(SUT, E) is undirected and |S|=|T|=n

(b). the probability that an edge from S x 1" is present is p (a positive constant), and if an edge is present
then its capacity is 1

(€). X ues @u = Y et by, and all supplies and demands are non-negative integers

(d). Yu € S, a, < pD(n) and Yv € T', b, < pD(n)

We will show that the transportation problem instances satisfying these conditions are feasible with high
probability. This will be done constructively by specifying a linear time algorithm which succeeds in finding
the feasible flow with high probability. Once again note that the supply or demand at a node is only slightly
smaller than the expected capacity of the edges incident at it. This is essential to guarantee feasibility.

The following theorem results.

Theorem 3.1 (Undirected Transportation Theorem) The Undirected Transportation Algorithm finds
a feasible flow for transportation problem instances satisfying conditions (a)-(d) in linear time with proba-

bility 1 — O(n™"), where v > 0 is a constant which depends on p.

The expected value of the capacity of any edge is p. Consider the deterministic relaxation of the above
problem. It would correspond to finding a feasible flow for the supplies a; and the demands b; in the case
where the underlying undirected graph is complete with all edges having capacity p. It is not very hard to
show that the deterministic problem has a feasible solution. However, we will need to find a feasible flow
using the edges in the forward direction only. In this directed case, the problem need not have a feasible
solution at all, e.g. consider the case where a; = by = 2 and all other supplies and demands are 0. To
get around this problem we will add a large number F(n) to each supply and demand. Now we will be
able to find a feasible flow for the deterministic relaxation using edges in the forward direction only. It has
been observed [HZ] that a transportation problem instance is feasible provided the values of the supplies
and demands are sufficiently uniform. Uniformity of the supplies and demands requires that the supply
(demand) at a source (sink) is in proportion to the net capacity of the edges incident at that source (sink).
In a sense, adding F/(n) to each supply and demand corresponds to making their values uniform, since the

expected total capacity of the edges incident at each vertex is equal.

The Undirected Transportation Algorithm is based on the mimicking paradigm. The first stage of
this algorithm constructs a solution to the deterministic relaxation of the original problem. To simplify
the algorithm, we will scale up the deterministic relaxation by a factor of ¢ = 1/p. This corresponds to

multiplying all capacities, supplies and demands by a factor of ¢. The original problem instance does not
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need to be scaled. Let us choose E'(n) = 570 Define @}, = ca, + E(n) for all u € S, and b, = cb, + E(n)

for all v € T. Also, let @’ be the s-dimensional vector (a}) and b’ the ¢-dimensional vector (b)). The
deterministic problem is an undirected transportation problem with (a’,d") as the supply-demand vectors
and all edges of capacity e¢p = 1. We will use all edges in the forward direction only and so the deterministic

problem is exactly that of finding a realization of (a’,d’).

The first stage of the algorithm constructs a realization of the pair (a’,d'), viz. the 0/1 n x n matrix
M (a’,b’). This corresponds to the deterministic solution of the transportation problem instance with all
random variables (in this case, the edge capacities) replaced by their expected values. In the second
step we mimic the solution of the deterministic relaxation by saturating the edges (if present) which
correspond to the non-zero entries in M (a’,b’). The flow is sent in the forward direction, i.e. from S to
T. Finally, using the edges in the backward direction we fine-tune the solution to obtain a feasible flow
for the transportation problem instance under consideration. The fine-tuning will take care of the error
introduced at the mimicking stage, as well as the any extra flow caused by the addition of F(n) to the

supplies and demands in the scaled version of the deterministic relaxation.

The Undirected Transportation Algorithm

Step (1). [Deterministic Relaxzation] Construct the 0/1 n X n matrix M (a’,0). The pair (a,b') must
have only integral entries for the realization to be feasible. This can be ensured by rounding up or

rounding down each a,, b}, while still satisfying the condition ), cgal, = > 7 bl

Step (2). [Mimicking Process] Saturate in the forward direction all existing edges which correspond to
the 1’s in M (a’,b"). This yields a 0/1 n x n flow matrix N. Let the row-sum and the column-sum

vectors of this matrix be @ and b, respectively.

Step (3). [Fine Tuning] At this point each u € S has sent an excess of @, — a, units of flow, while each
v € T has received an excess of b, — b, units of flow. Using the Fine-Tuning algorithm and all edges
in the backward direction, send out b, — b, units of flow from each v € T. Ensure that each v € S

receives exactly a, — a, units of flow.

Step (4). Combine the flows constructed in the two previous steps to obtain the desired feasible flow.

3.1 Analysis of the Undirected Transportation Algorithm

We will prove the Undirected Transportation Theorem with the help of the lemmata presented below.
Lemma 3.1 establishes that the first step of the algorithm will succeed by showing that the pair (a',b’) is

realizable. The realization algorithm will construct the matrix M (a, ) in linear time given its feasibility.

Lemma 3.1 The pair (a',b') is realizable.
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Proof: Consider a transportation problem instance Z with |S| = |T'| = n. Assume that all edges from
S x T are present. Let each edge have capacity 1 and be directed from S to T. Let a!, be the supply
at u € S, and b, the demand at v € T. The Integrality Theorem for flow problems can be applied to
this transportation problem instance. It implies that, in a feasible transportation problem instance, if all
supplies, demands and capacities are integral then there is an integral feasible flow. The rounding process
in Step (1) ensures that the supplies and demands are integral, while all capacities are 1 in Z. Thus, we
have that Z is feasible if and only if the pair (a,b’) is realizable. We invoke the Transportation Theorem
to establish the feasibility of 7.

By the Transportation Theorem, 7 is feasible if and only if VX C .S
> ay < ) min(by, c(X, {v})) (1)
ueX veT
In this case, ¢(X,{v}) = for all v € T', where # = | X|. Note that the following bounds hold for ¢’ and ¥,
(n)+ D(n), YuesS
(n)+D(n), YoeT

We now perform a case analysis on the value of z to establish the validity of inequality (1).
Case 1 [z < F(n)] :

In this case the inequality (1) is equivalent to the following inequality.
Z a, <an

Since n > E(n)+ D(n) the above inequality, and hence (1) is valid.
Case 2 [z > E(n)] :
In this case the inequality (1) is implied by the following inequality.

Za&ﬁZb;—l—x(n—y), VW CT, y=1Y] (2)
ueX veY

Since each a, < E(n) + D(n), we have that Ay =37, cy a, < z(E(n)+ D(n)). Clearly, this quantity
Ax is less than z(n — y) when y < n — E(n) — D(n). It follows that the inequality (2) is valid when
y < n—FE(n)—D(n). Therefore, we only need to consider the case where z > F(n) and y > n—FE(n)—D(n).

Using the bounds on the supplies and demands, we obtain the following inequality.

' / /
Do = da— )

ueX uesS ueS\X
< Dby —(n—2)E(n)
veT
< Zb;—l— Z b, — (n — z)E(n)
veY veT\Y
11
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Using 3" ey 0, < (n —y)(F(n) + D(n)), the above inequality implies that the inequality (2) is valid
if the following inequality (3) is valid for n — D(n) — E(n) <y < n.

(n —y)(E(n) + D(n)) — (n - z)E(n) < 2(n - y) (3)

If 2 > F(n)+D(n) then it is easy to see that the inequality (3), and hence (2), must be valid. Therefore,
we are only left with the case where F(n) < 2 < E(n)+ D(n) and n — D(n) — E(n) < y < n. Using
x> F(n) and the fact that n —y < I/(n) + D(n), we obtain that the inequality (3) is valid if the following
inequality holds.

(B(n) + D()) D(n) < (1 — E(n)E(n)

This inequality can easily be verified for our choice of the values of E(n) and D(n).

We now turn to Step (2) of the algorithm. The next lemma bounds the values of the excess flow sent
by the sources and the excess flow received by the sinks. Let Fi(n) = D(n) + E(n).

Lemma 3.2 In the Undirected Transportation Algorithm

Vy>0, 3>0 Prob[Fu € S : |a, —pal,| > [\/F(n)log F(n)] = O(n™")

Vy >0, >0 Prob[Fv € T : |b, — pb,| > [y/F(n)log F(n)] = O(n™")

Proof: Let X be the sum of r Bernoulli trials, where each trial assumes the value 1 with probability p
and value 0 with probability 1 —p. The Chernoff bound [Ch] as applied to the tail of binomial distribution
states that for any 3, such that 0 < g <1,

Prob[| X — rp| > fBrp] < 2e(=0772/3)

The number of non-zero entries in each row or column of the matrix M (a', ') is at least F'(n) and at
most F'(n). This is the number of trials in a Bernoulli process where each trial is successful with probability
p(n). An application of the Chernoff bound for the tail of the binomial distribution completes the proof

of the lemma.

At this stage we are guaranteed that the following bounds hold (with high probability).

pE(n) =1/ F(n)log F(n) < a, —a, < pE(n)+1y/F(n)log F(n), VueS (4)
pE(n) — \/F(n)log F(n) < b, — b, < pF(n)+ 4/ F(n)log F(n), YvoeT (5)

Step (3) of the algorithm uses the edges in the backward direction to route the excess flow back from
sinks to sources. It is clear that a,, !, b, and ] are all integral as required for the application of the
Fine-Tuning Algorithm. The bounds on the excess, (4) and (5), together with the Fine-Tuning Theorem

yields the following lemina.
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Lemma 3.3 The Fine-Tuning Algorithm succeeds in Step (3) with probability 1 — O(n™), where o > 0 is

a constant which depends on p.

The probability of failure of each stage of the algorithm is now suitably bounded from above. We now
observe that the probability of failure of the entire algorithm is bounded from above by the sum of the
probabilities of failure of the various steps in the algorithm even though they may not be independent.
This completes the proof of the Undirected Transportation Theorem. Note that we cannot choose F(n)

to be larger than % if we wish to employ the Fine-Tuning Theorem as above. The proof of Lemma 3.1

il

requires that F'(n) should not be much smaller than D(n). This imposes an upper bound of
D(n).

on
logn

We observe that the Undirected Transportation Algorithm can also be applied to certain cases where
|S| # |T'|. The proof of the Undirected Transportation Theorem is easily seen to extend to the case where
|S| # |T| provided |S|, |T'| are large enough, i.e. that they should be substantially larger than D(n) and
FE(n). Note that to be able to apply the Fine-Tuning Algorithm in the case where |S| # |T'|, we again need
that |\S| and |T'| should be substantially larger than E(n).

3.2 The Undirected Max-Flow Problem

We now make use of the Undirected Transportation Theorem to devise an algorithm to solve a probabilistic
version of the undirected max-flow problem. Consider an instance of the max-flow problem satisfying the

following conditions.

(a). the underlying graph is undirected
(b). |S|=|T|=r and |I| = n, where r < n may depend on n
(c). each edge is present with a probability p (a positive constant) and if an edge is present then its

capacity is 1

We assume, without loss of generality, that the (S, V —9) cut has a smaller capacity than the (V —T,7T)
cut. If this is not the case then we can interchange the roles of the source and sink vertices and reverse

the direction of each edge. We present the following theorem,

Theorem 3.2 (Min-Cut Theorem) In instances of the probabilistic maz-flow problem satisfying condi-

tions (a)-(c),
Prob[The (S,V — 5) cut is the minimum cut] =1 — O(n™)

where a > 0 is a constant which depends on p.

This theorem is proved by presenting a linear time algorithm, called the Max-Flow Algorithm, which
constructs a flow saturating the (S,V —5) cut. Clearly, the value of the max-flow is less than or equal to

the capacity of this cut.
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The Max-Flow Algorithm works in two stages. In the first stage, an instance of the probabilistic
transportation problem is created such that a feasible solution to that instance will yield a flow saturating
the (S,V — S) cut in the original problem. In the second stage it uses the Undirected Transportation

Algorithm to solve the transportation problem instance generated in the first stage.

3.3 The Max-Flow Algorithm

Our aim is to find a flow which will saturate the (S, V — ) cut. Clearly, we can ignore edges drawn from
S xS and T x T. Moreover, all edges from S X T can be saturated (in the forward direction) without
affecting the flow through the remaining edges. We now consider only the edges from S x I, I x I and
I xT. The algorithm will find a flow which will saturate all edges from .S X I in the forward direction.

For each v € I define A, = ¢(S,v) — ¢(v,T), this is the excess of the capacity of incoming edges over
the capacity of the outgoing edges.. Let It ={vel : A, >0}and I- ={vel : A, <0}. Further
define A* =3 ;4 A, and similarly A~ =3 c;~ A,. We now describe the first stage of the Max-Flow
Algorithm.

The Max-Flow Algorithm

Step (1). Saturate all edges from S x I by sending flow from sources to intermediate nodes.
Step (2). Saturate all edges from I x T" by sending flow from intermediate nodes to the sinks.

Step (3). Since ¢(S,I) < ¢(I,T) we have AT + A~ < 0. At this point, for each v € I, the excess of
in-flow over out-flow is exactly A,. Arbitrarily reduce flow along edges drawn from I~ x T until the
net flow across the (9, I) cut equals the net flow across the (I,7) cut. Ensure that, for each v € I,
the new excess flow, say d,, remains non-positive. Let 6= = 3 ;- §,, then we have AT 4§~ =0
and A, <4, <0, for each v e I™.

Step (4). Let G! be the bipartite subgraph of the original underlying graph G which is induced by the
vertex set S! = It and 7' = I~. Construct an instance of the capacitated transportation problem

with G as the underlying graph, supply A, for v € S and demand —§, for v € T*.

It is easy to see that the first stage works in linear time. In the second stage of the Max-Flow Al-
gorithm we find a feasible flow for this transportation problem instance using the linear-time Undirected
Transportation Algorithm described earlier. The final flow is the sum of the two flows constructed in the

two stages of the max-flow algorithm. The following theorem results.

Theorem 3.3 (Max-Flow Theorem) The Maxz-Flow Algorithm finds a mazimum flow for instances
satisfying conditions (a)-(c) in linear time with probability 1 — O(n™%), where a > 0 is a constant which

depends on p.

Observe that the above algorithm will find a flow saturating the (S,V — S) cut if the second stage

succeeds:—Ihisflow-will-be-a-maximum flow. To complete the proof of this theorem we need to show that
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the transportation problem instance generated by this algorithm satisfies the conditions of the Undirected
Transportation Theorem. We first prove the following bound on the size of the excess at each intermediate
node. This bound also applies to the size of the supplies and demands of the transportation problem

instance generated in the first stage. We also show that [/T] and |I~| are both fairly close to n/2.
Lemma 3.4 In the Max-Flow Algorithm

Yy >0, 3k > 0, Prob[dv e I : |A,| > kyv/nlogn] = O(n™")

Proof: The result holds for the case where r < /n since the maximum value of A, is then bounded by
v/n. We now consider the case where r > /n.

Consider some v € I. Let X, denote the number of edges from S x {v} which are actually present in
the underlying graph G. Similarly, let Y, denote the number of edges from {v} x T'. Clearly, both X, and
Y, are the sum of r independent Bernoulli trials where each trial assumes value 1 with probability p and
value 0 with probability 1 —p. We make use of the Chernoff bound [Ch] as applied to the tails of binomial
distributions. For any 8, 0 < g < 1, we have,

Prob[X, > (1— B)rp] < e=#"ro/2
Choosing 8 = %g—r, for some positive constant b, and applying the bound to both X, and Y, we have,
Prob[|A,| = | X, — Y, | > 28rp] < 4r~"#/2
Summing over all v € I and choosing b = 2(1 + 2v)/p and k = \/8p(1 + 2v) we have,
Prob[Fv € I : |A,]| > ky/rlogr] = O(r™%)
Since /n < r < n we have the desired result.

Lemma 3.5 In the Max-Flow Algorithm

Vy >0, 3f >0, Prob[| |[IT] — n/2| > f/nlogn] = O(n™")

Proof: In our definition of /T and I~ we ignored the vertices v € I for which A, = 0. Since these
vertices can be assigned to either set, they can be used to balance the sizes of I™ and I~. To simplify the

following description we will assume that such vertices will be assigned to either I or I~ equiprobably.

By symmetry, Prob[v € I is assigned to /1] = 1/2. Independence follows from the observation that
all edge capacities are independently distributed. An application of the Chernoff bound yields the desired

result.

It is clear that the transportation problem instances generated in the first stage satisfies all requirements
of the Undirected Transportation Theorem, with one exception. The number of sources (I*) and sinks (17)
in the transportation problem instance will not be equal. However, as we remarked earlier, the Undirected
Transportation Algorithm can be still be used provided the number of source and sinks is large enough.

‘Theboundofrombemmar3-deshows that this is indeed the case.
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4 A Directed Transportation Algorithm

We now present an algorithm to solve certain instances of the transportation problem where the underlying
graph is directed. In particular, we consider instances of the transportation problem satisfying the following

conditions.

(a). the underlying graph G/(SUT, E) is complete and every edge is directed from S to T’
(b). IS] = 17| = n

(c). the edge capacities are i.i.d. random variables drawn from the set {0,1,... K}, where K > 1 is some

constant
(d). the expected value of the edge capacities is at least 1+ €, where € is a positive constant

(e). the pair (a,b) is (D + 1)-realizable, for some integer constant D > 0 to be specified later

Once again our assumptions about the supplies and demands are essentially the weakest possible. Since
the expected edge capacity is close to 1, we obviously need that the pair (a, b) is realizable. Our requirement
of (D + 1)-realizability is only a slight weakening of that necessary condition. We could also have assumed
that the supplies and demands are chosen from some reasonable distribution, say a uniform distribution.
It is not very hard to see that then the pair (a,b) would have been realizable with high probability. Our

result is much stronger because we allow the supplies and demands to be arbitrarily chosen, subject to (e).

We present an algorithm, the Directed Transportation Algorithm, which will solve such instances of

the transportation problem with high probability. This leads to the following theorem,

Theorem 4.1 (Directed Transportation Theorem) The Directed Transportation Algorithm finds a
feasible flow for transportation problem instances satisfying conditions (a)-(e) in linear time with probability

1 — O(n™7), for some constant v > 0.

Before we describe the algorithm and prove the Directed Transportation Theorem we present two

combinatorial theorems which are useful in the analysis of the Directed Transportation Algorithm.

4.1 A Combinatorial Process

Consider the following combinatorial process. The state of the process is an arbitrary placement of n
particles, call them P = {1,2,3...n}, on integer points of the real line. There may be more than one
particle at a given position. The initial state has all n particles at the origin. A state transition is divided
into two distinct steps. Let S be a subset of P such that |S| = 2k. The first step in a transition moves
every particle in 5, for some arbitrary S, one position in the negative direction (say to the left). In the
second step, the k leftmost particles are each moved two positions to the right (or in the positive direction).
It can be shown that no particle will ever move out of the interval [—Alogn, 2], where A is some positive

constant.
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Let K be a positive integer and 8 a positive real number. Consider now the following generalization
of the combinatorial process. The definition of the state (as well as the initial state) of the process is as
before. The first step of a transition, as before, moves all particles in S, for some arbitrary S, one step
each to the left. The second step of the transition involves the choice of n arbitrary integers, {dy, ds,...d,}
such that 377, d; = [S] and 0 < d; < K for each 7. We will refer to the requirement that 3%, d; = [5]
as the balance constraint. It is also required that 2;21 d; > (1+6)t for all t < to, where g is the index of
the rightmost non-zero d;. This last condition will be referred to as the prefiz constraint. The second step

of a transition now moves the t*"-leftmost particle d; positions to the right, for t = 1,2, ..., to.

The conditions imposed on the second step of a transition ensure that the net rightward movement of
a group of ¢ leftmost particles is larger than ¢. This constraint prevents any particle from straying too far

away to the left. The following theorem can be proved about the generalized process.

Theorem 4.2 (Interval Theorem) All particles remain in the interval [—C'logn, D] of the real line,
where C'= C(K,0) and D = D(K,8) are positive constants.

The following notation and lemma will be required for the proof of this theorem. Let p;(7) denote the
location of the i** particle after 7 transitions have taken place. The state of the process at time step
will be given by the set of locations, p;(7), occupied by the particles ¢, 1 < i < n. The main tool for the
analysis of this combinatorial process will be the following notion of the moment at an integer point on

the real line.

Definition 4.1 Let p be any integer point on the real line. The left moment at p at any time is the sum

of the distances from p of all particles to the left of p on the real line.

LM(p,7)= Z max(p — pi(7),0)

In the following lemma, we will show that the moment satisfies an invariant inequality at each time
step. Using this invariant, we will be able to establish that no particle can move too far away from the

origin.

Lemma 4.1 There exists A and p depending only on 8 and K such that,

(a). A>0and0<p<1, and

(b). at each time step T and for each integer |, LM (I, 7) < nAp~’.

Proof: The proof will be by induction on the time step 7. We will assume that the lemma holds for all
[ at the time step 7 — 1, and prove it for all [ at time step 7. We will start by proving the induction step,
and later show the base case, i.e. at time step 0. The value of the constants p and A will also be specified

later.

Assume that the left moment at every integer position satisfies the required inequality at time step

7 — 1. We now show that it must satisfy the required inequality after the completion of the 7** transition,
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henceforth referred to as the current transition. Observe that it suffices to prove the invariant for a
particular position [ on the real line, without any loss of generality. Therefore, we are only required to
show that LM (l,7) < nAp~'. The main idea of the proof is to bound the new moment at [ by a positive
linear combination of the moments at the previous time step. To simplify our notation we will consider

everything relative to this location [. We will use the following notation.

Notation 4.1 o Let cell © denote the location | — v on the real line, where 1 < K — 1.
o Let cell K denote all locations to the left of | — (K —1).
o Let A; denote the number of particles in cell ¢, before the current transition.

o Let a; denote the number of particles which were moved one unit to the left from cell v in the first

stage of the current transition.

o Let B; denote the sum of the distances that particles from cell 1 were moved to the right in the second
stage of the current transition. Thus, 3; = ) .cs, dj, where S; is the set of particles that resided in

cell 1 after the first stage of the current transition.

e Let M(h) denote the moment at cell h before the current transition and M'(h) denote the moment
at cell h after the current transition. By definition, M (h) = LM (l — h,7 — 1) and we have to prove
that M'(0) < nAp~!.

In general, we will only be interested in particles which lie at cell 0 or to its left. Whenever we refer to
a particle at cell 7 it will be assumed that 0 < < K, unless otherwise stated.
The moment at cell A, —1 < h < K, before the current transition is given by the following equation.
K
MB) = M(K)+ Y (i = h)A; < nap™t+h (6)
i=h+1
Let L denote the moment gained at cell 0 during the first stage of the current transition. Also, let R denote

the moment lost at cell 0 during the second stage of the current transition. Thus, we have that,

M'(0) = M(0)+ L — R (7)

Observe that each particle to the left of the cell 0 which was moved a unit to the left (in the first stage
of the current transition) will contribute to the increase in the moment at cell 0. It is now easy to see that

L is given by the following equation.
K
L=> a (8)
=0

Consider now a particle which was moved ¢ positions to the right in the second stage of the current
transition. It is possible that this particle ended up at a position to the right of cell 0. In that case, its
contribution to the decrease in the moment at cell 0 would be less than ¢. This complicates the computation

of thevalue of S Howeverswe.do know that a particle which was moved from cell 7 to a position to the
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right of cell 0 will cause a decrease of 7 in the moment at cell 0. Further, it is known that a particle can
move at most K positions to the right in a single transition. This implies that the particles in cell ¢ (before
the second stage of the current transition) must cause a decrease of at least %ﬁz in the moment at cell 0.

Thus, we have the following lower bound on the value of R.
1 K
P (9)

It will be convenient to express the above lower bound on R in terms of A; and a;. This can be
done as follows. Consider the rightmost particle which was moved to the right in the second stage of the
current transition. Let ¢ denote the cell to which this particle belonged at the end of the first stage of
the current transition. If cell ¢ was to the right of cell 1 then set t = 1. It is clear that if ¢ > 1 then

= Py = ... = Bi—1 = 0. The balance constraint on this combinatorial process requires that the net
leftward movement in the first stage of any transition be exactly equal to the net rightward movement in

the second stage of that transition. Therefore, we have the following inequality.

K K
Y= (10)
1=t =0

Note that this inequality need not be tight since there may be particles to the right of cell 0 which were
moved to the left in the first stage of the current transition. It is not very hard to see that the inequality

also holds in the case where particles to the right of cell 0 were moved rightwards in the second stage.

The number of particles at cell ¢ and to its left after the first stage is a;—1 + Z?:z A;. We invoke the

prefix constraint on the transitions to derive the following inequality for t +1 < < K.

K

Zﬁ]_ 1+ 60)(aic1 + Y Aj) (11)

] =1

We now use equations (9), (10) and (11) to derive the following lower bound on R, after some algebraic

manipulation.

K K-1 K

t 14+ 6 14+ 6 .

R > — E a; + —— a;+— (l_t)Ai (12)
K =0 1=t K 1=t41

We are now in a position to give an upper bound on the value of M’(0). Substituting equations (6), (8)
and (12) into (7) we obtain the following inequality.
K K K-1 K
, t 1440 1440 ,
M'(0) <M A; (1——) P = i —t)A; 13
R LI e "

In order to show that this is bounded by nAp~' we have to consider three different cases.

Case I [t = K] : In this case the RHS of inequality (13) turns out to be exactly M (0) and, thus, by the
induction hypothesis, M'(0) < M(0) < nAp~".
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Case II [t = K — 1] : In this case inequality (13) can be seen to imply the following, using the fact that

0<a; <A;.
K-2

M'(0) < M(K) —I—ZZA—I— ZA

At this point we invoke equation (6) and make use of the induction hypothesis to obtain the following

bound.

o) < 0ap= (1= ) + (520) 4 o) = w0

The last inequality completes the analysis of Case Il provided f(p) < p. It can be shown that this is

indeed the case provided p is sufficiently close to 1. To see this, it is enough to verify that the function
9(p), : L )
= —p=11=—= YN K Y K41
glp) = f(p) —p ( K)+< I ),0 + P p
is negative when p < 1, for p close enough to 1. This can be verified by observing that ¢ is continuous at
1, g(1) = 0, and ¢'(1) is positive.

Case IIT [1 <t < K —2] : In this case inequality (13) can be seen to imply the following, using the fact
that a; < A;.

K
M(0) < (1 _ %) (M(K) +Y G+ 1)Ai) + (% - %(K - t)) (M(K) + Ax) + %(K — ) M(K)

=0

At this point we invoke equation (6) and make use of the induction hypothesis to obtain the following

bound.

1 1 0 - 0 -
M'(0) < nAp=t! ((1 _ ?) + (E - K~ t)) o (K t),o“l) < nAp~lp = nap!

The last inequality also holds when p < 1, for p close enough to 1. This can be verified in the same manner

as in Case II.

This concludes the proof of the induction step. Note that p is chosen to lie close enough to 1, so as to

satisfy all the inequalities derived above. Similarly, A will be chosen such that the base case is satisfied.

Base Case : In the initial state all particles were at the origin. This implies that, at time step 0, the
left moment at all integer points p < 0 were 0, thus trivially satisfying the invariant. The left moment
at location p, for p > 0, is simply pn in the initial state. We choose A such that, for all p > 0, it is the
case that np < ndAp™P. Clearly, it must be the case that A > ppP. Such an A exists since the function
h(p) = pp? is bounded for p > 0.

|

We are now ready to prove the Interval Theorem.
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Proof: [Interval Theorem] We first show that no particle can move too far to the left. This may be
verified by considering the leftmost point on the real line which has a non-zero moment. Let p; < 0 be the
leftmost point on the real line at which a particle may be placed in this combinatorial process. A particle

in location p; contributes 1 to the left moment at p; + 1. Thus, we have the following inequalities.
1< LM(p+1) < ndp#!

Therefore, it must be the case that p; > —C'logn where C'(K, 8) is a positive constant.

Now we show that a particle cannot move too far to the right. Let p. > 0 be the rightmost position
occupied by a particle during this combinatorial process. Consider the first time a particle is moved onto

the position p,. Clearly, this particle must have previously occupied a position at or to the right of p, — K.

_n_
1+6
n

140
Therefore, there must be a right moment of at least (p, — K)

The prefix condition requires that there be at most particles to the left of a particle which is moved to

the right. This implies that there must be at least particles at or to the right of the position p, — K.

n
146

due to the balance constraint, the right moment must be equal to the left moment at the origin at all

about the origin. It is easy to see that,

times. The left moment at the origin is always less than nA. Thus, we get the following inequality.
on
. — K)—— < nA
(pr = K) g =

This means that p, < D, where D(K, ) is an appropriately chosen constant.
|

4.2 A Generalization of the Mendelsohn-Dulmage Theorem

Mendelsohn and Dulmage [MD] proved the following theorem about bipartite graphs.

Theorem 4.3 (Mendelsohn-Dulmage Theorem) Let G(SUT, E) be a bipartite graph and let My and
My be two matchings in G. Then there exists a matching Ms C My U My, such that Ms covers all the
nodes of S covered by My and all the nodes of T covered by M.

The proof of this theorem is constructive and leads to an algorithm which runs in time O(|S| + |T]).
We generalize this theorem as follows. Let K be a fixed positive integer. By a K-matrix we mean a m X n

matrix whose entries are drawn from the set {0,1,..., K'}

Theorem 4.4 (Generalized Mendelsohn-Dulmage Theorem) Let M be a K-matriz whose row sums,
1

a;, and column sums, b}, satisfy the following condition,
If < al and b} < ué
Similarly, let M? be a K-matriz whose row sums, a?, and column sums, b?, satisfy the following condition,
a? < uf and l; < b?
Then there exists a IS -matriz M> such that
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(a). the row and column sums of M?> satisfy the following conditions

s s
li u,;

a,; :

IN
ey
IN

¢ 3 ¢

(b). for each i, j we have 1\43 < max(M} M2)

2]7
Moreover, a matriz M? satisfying the above conditions can be constructed in O(Kmn) time.

Proof: First, observe that the only case we need to consider is where for each 7, j we have min(ZM}]7 M2)

0. If this is not the case then let D be the K-matrix where V3,7, D;; = min(ZM}]7 M2) Subtract D from
both M! and M?2. Also, modify the upper and lower bounds on the rows (and columns) of M*', M? by
subtracting the row-sums (and column-sums) of the matrix . Clearly, a solution to the new problem,
when added to D, gives a solution to the original problem involving M! and M?.

We now restrict our attention to the case where Vi, j, min(ZM}]7 M2) = 0. Let a¢; = max(al,a?) and

b, = max(bll7 b?), for all ¢,j. Define a vertex set S such that for each row ¢ there are a; vertices s(3, 1),
5(7,2), ..., s(¢,a;). Similarly, define the vertex set 7" such that for each column j there are b; vertices t(j, 1),
t(4,2), ..., t(4,b;). We will construct matchings X' and X? on the bipartite vertex set SUT corresponding

to the two matrices M! and M?, respectively. We describe the construction of the matching X' only. The

other matching, X2, can be constructed analogously.

For each non-zero entry M}], introduce M}] edges into X! connecting vertices corresponding to row i
with vertices corresponding to column j. It is easy to ensure that each vertex in S UT has at most one

edge incident on it. This process yields a matching of cardinality S/, a! = > i1 b}.

We now invoke the Mendelsohn-Dulmage Theorem to construct a third matching, X C X'UX?, which
covers all the vertices in S covered by X' and those in T covered by X?. To derive the matrix M? from the
matching X3, set the value of M% to be the number of edges in M? which connect vertices corresponding

to row ¢ with those corresponding to column j.

Clearly, the row-sums of M? respect the upper bounds since the number of vertices corresponding to
each row do so. The row-sums of M? are seen to respect the lower bounds since the matching X covers at
least as many vertices of each row as the row-sums of M!. Similar reasoning shows that the column-sums

of M? respect both the upper and lower bounds. This establishes condition (a) of the theorem.

To verify the validity of condition (b), recall that min(M};, M7:) = 0. This implies that the number of
edges in XU X2 connecting vertices corresponding to a row ¢ with the vertices corresponding to a column

j is less than max(M};, M%). Thus, the value of M cannot exceed max(M};, M7).

Finally, note that the entire proof is constructive. Moreover, the construction described above requires

only O(Kmn) time. This concludes the proof.
i
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4.3 The Directed Transportation Algorithm

The key idea behind the Directed Transportation Algorithm can also be formulated in terms of the mimick-
ing paradigm. We first set aside a small fraction of the edge capacities for the purposes of the Fine-Tuning
Algorithm. Next, we construct the (D + 1)-realization of the supply/demand vectors. This corresponds
to the solution of the deterministic relaxation of the probabilistic transportation problem. The solution to
the relaxed problem is then mimicked to obtain a partial solution to the original problem. The mimicking
process is considerably more sophisticated then that used for the transportation problem. Finally, we use

the reserved capacity to fine-tune the solution to obtain a feasible flow.

We now present a brief outline of the mimicking process used by this algorithm. The mimicking process
works in a row-by-row fashion, i.e., the algorithm computes the flow matrix for the probabilistic instance
by mimicking in order the rows of the flow matrix for the deterministic instance. It is ensured that the
row-sums of the solution created by this process are exactly equal to the desired values. Consider the stage
where the first + — 1 rows have already been mimicked. This means that we have created a partial flow
matrix for which the entries of the first ¢ — 1 rows have already been determined. We now describe how
the entries of the i*" row will be computed. At this point there may be a discrepancy in the column-sums
(for the first ¢ — 1 rows) between the deterministic and the mimicking solutions. Let P; denote the excess
of the j* partial column-sum in the mimicking solution over that in the deterministic solution. While
determining the values for the i row we will consider the columns in increasing order of discrepancy.
The edges corresponding to the entries in row ¢ are saturated until the desired row-sum is achieved. The
behavior of the column discrepancies is analogous to the combinatorial process outlined earlier. To make
the analogy complete it will be necessary to introduce a certain amount of fictitious capacity, as will be
explained later. Let # = 1/N, where N is a fixed positive integer such that 0 < 8 < e. Also, let D be the
constant D(K,6) determined by the Interval Theorem.

The Directed Transportation Algorithm

Step (1). Set aside a small fraction of the edge capacities for use by the Fine-Tuning Algorithm. For each
edge with a non-zero capacity, ¢(¢, j), set aside one unit of capacity with probability § independent
of the other edges, where 0 < § < ¢ — 6. Let the expected value of the new capacities, {c(¢, )}, be
1+ ¢; then 6§ < €.

Step (2). [Deterministic Relaxation] Let a = (¢;) and b = (b;) denote the supply and demand vectors,
respectively. In linear time, construct the (D + 1)-realization of the pair (a,b). Let M = M (a', V)

be the resulting matrix.

Step (3). [Mimicking Process] Construct a flow X = (2;;), row-by-row, such that 3°7_, #;; = a; (for
each ¢) and S, Ty R S, M, ; (for each j). The flow X can be constructed as follows. Suppose
we are currently processing row :. Let P; = Ej,;ll Tpj — Ej,;ll M, ;, for each column j, where P; =0
ifi = 1.

Step (Bl )endit—bin—uMyss for cach j.
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Step (3.2). Let ¢y, ¢, ..., ¢, denote the capacities of edges going from source ¢ to the sinks in
increasing order of P;. Increase these capacities from ¢; to ¢} so as to ensure that yj_, ¢} >
(14 60)t and that ¢, € [0, K], for each ¢, k. This may be done by choosing ¢} to be max{e¢;, [(1+
6)l — 2;11 ¢,)}. The extra capacity introduced in this fashion will called the fictitious capacity.

Let U; denote the amount of fictitious capacity required for row #;i.e. U; =37 (¢] — 7).

Step (3.3). Send out a! units of flow out of source i by considering the edges in increasing order of
P;. Send out c; units of flow along the j** such edge, until a total of a: units of flow have been
shipped out. It may be observed that, due to the introduction of the fictitious capacities, the
flow along an edge may exceed the actual capacity. Let z;; denote the flow sent along the edge
(ir):

Step (3.4). P; + P, + z;;, for each j.

Step (4). Repeat the mimicking process of Step (3) with the roles of the rows and columns interchanged.
In other words, construct a flow by mimicking the deterministic solution in a column-by-column
fashion, using row discrepancies and introducing fictitious capacities as in Step (3). Let Y be the
flow obtained in this manner. Also, let V; denote the total amount of fictitious capacity introduced

in column j.

Step (5). Construct a flow X’ which satisfies all capacity constraints by appropriately reducing the flow

X along edges with fictitious capacities. Similarly, construct a flow Y’ from the flow Y.

Step (6). Consider the two K-matrices X’ and Y’. Using the Generalized Mendelsohn-Dulmage algo-
rithm, compute a third K-matrix Z such that the row- and column-sums of Z satisfy the bounds
satisfied by the row- and column-sums of X’ and Y’. The Generalized Mendelsohn-Dulmage algo-
rithm ensures that each entry of Z matrix is no more than the larger of the corresponding entries in

the X’ and Y’ matrices and hence no more than the corresponding edge’s capacity.

Step (7). [Fine Tuning] Let @ and b denote the row and column sum vectors for the flow matrix Z. In
Step (1) the capacity set aside for each edge (¢,7) was é(¢,5) — ¢(7,7). Using these capacities and
the Fine-Tuning Algorithm, construct a flow 7’ with supply and demand vectors (a — a) and (b — b),
respectively. The sum of the two flows, Z and Z’, is a feasible flow for the transportation problem

instance under consideration.

4.4 Analysis of the Directed Transportation Algorithm

The proof of the Directed Transportation Theorem will be presented via the following lemmata. But,
first, observe that the algorithm runs in linear time since each step requires at most O(n?) operations, and
the size of input is Q(n?). We now proceed to show that each step of the algorithm succeeds with high
probability.

Lemma 4.2 At the end of Step (1), the remaining capacities have expected value at least 14+¢ = 1+e€—4.
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Proof: Consider an edge (¢,7). The original capacity of this edge is ¢(¢, 7) and the capacity at the end
of Step (1) is é(7,j). Let pr = Probledge (¢,7) has ¢(7, j) = k], for each k£ € [0, K]. Then we have the

following bound.
K
Exple(i, )] = 3 puld(k = 1) + (1= 6)k] > Exple(ij)]— 6 > 14 ¢ =5
k=1

A generalized random walk analysis yields the following bounds on the amount of fictitious capacity

introduced by the algorithm.
Lemma 4.3 For all v > 0, there exists s > 0 such that max; U; < slogn with probability 1 — O(n™"7).

Proof: We make use of the analysis of a generalized one-dimensional random walk [Fe] to prove this
result. Consider the following random walk process. The particle is initially at some integral position
z > 0. The r** step is given by the random variable X, which takes only integral values. Let S, denote the
position of the particle after r steps. Then, Sy = z and S; = >'_; X, + z for t > 0. Let u.(a) denote the
probability of the particle going to a position < 0 before it goes to a position > a, for some fixed integer

a > z.

Suppose the following conditions hold,

(a). (X,) are i.i.d. random variables
(b). m = Exp[X;] >0

(c). X, € [-v,pu], where v, u are positive integers

It can be shown [Fe, pp. 363-366] that

O.a—l—u—l — o7

w0 S Ty

where ¢ is the unique positive root (other than 1) of the characteristic function of the probability distri-
bution of X,. It can be shown that 0 < ¢ < 1 when m > 0. Note that ¢ is a constant which only depends
on the distribution of (X,).

Consider now the fictitious capacity introduced for row ¢ in Step (3.2). Let U;(t) = (1+6)t —>'_, cr,
then U; = max; U;(t). Recall that @ = 1/N where N is a positive integer such that 0 < 1/N < ¢/. We want

to show that U; cannot be too large.

Let us relate the fictitious capacity to the random walk as follows. Let X, = N¢, — (N +1). We now
have that S; = —NU;(t) + z; here z is the initial position for the random walk which will be specified later.

Since the random variables (¢,) are drawn from the set {0,1,2,..., K} and Exp[c,] = 14 €, we have,

(a). X, € {Nd— (N+1) : d€{0,1,2,....K}}
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(b). Exp[X,]=¢N-1>0

(¢)ov=—(N4+1),u=NK-1)—-1

Suppose we select @ = n+ z and z = klogn, for some constant k& > 0. Now, u,(a) was defined as being
the probability that the value of Sy falls below 0 before it has ever risen above a. Equivalently, it is the
probability that the value of U; rises above % before it has ever fallen below # Clearly, the value of
U; can never fall below j%l unless Ef:l ¢, > n > a. The processing of the row is over if n units of flow

have been shipped out. This establishes that wu,(a) is the probability that U; is greater than kl?\,gn. We

now have,
O.a—l—u—l — o7 ;
<o

k
Prob [Ui > Nlog n] =u,(a) <

- gate-l _q

Summing the probability of failure over all n rows and given that 0 < ¢ < 1, we have for some v > 0,
k _
Prob [maXUi < Nlog n] =1-0(n"")

The proof of the next lemma is identical.
Lemma 4.4 For all v > 0, there exists s > 0 such that max; V; < slogn with probability 1 — O(n™").

Consider now the flow X constructed in Step (4). Since we used a certain amount of fictitious capacity,
the actual flow X' is slightly less than X. The next lemma gives bounds on the amount of actual flow

leaving a source as well as the actual flow entering a sink.

Lemma 4.5 Consider the flow matriz X'. The it" row-sum of X' (the net flow out of source i) is a; —
U; — (D + 1), while the j** column sum of X' (the net flow into sink j) is less than b; — 1.

Proof: We draw an analogy between the construction of the flow X and the combinatorial process
described earlier. The value of P;, after the processing of row ¢ — 1, corresponds to the position of particle
j after ¢ — 1 state transitions. The set {j|M;j = 1} corresponds to the set S arbitrarily chosen for the
it" state transition. The flow z;; routed to the column j with the " smallest P; corresponds to the
distance d; moved by the ! leftmost particle. The use of fictitious capacities ensures that, for each t,

St_iex’ > (1 +0)t as required by the combinatorial process.

It follows that the net actual flow out of source ¢ is exactly a} — U; = a; — U; — (D + 1). We know that
the net flow sent into sink j is b; + P;. Invoking the Interval Theorem, we have that P; < D. It follows

that the net actual flow into sink j is no more than b; +D=b; -1

The proof of the following lemma is similar to that of Lemma 4.5.

Lemma 4.6 Consider the flow matriz Y'. The i'" row-sum of Y' (the net flow out of source i) is at most
a; — 1, while the j column sum of Y' (the net flow into sink j) is exactly W, =V =b; =V, = (D+1).
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Lemma 4.5, Lemma 4.6 and the Generalized Mendelsohn-Dulmage Theorem together give us the fol-

lowing lemma.

Lemma 4.7 Consider the flow matriz Z(a, b) constructed in Step (6). It satisfies the following conditions,
ai_Ui_(D+1)§ai§ai_17 Vi
bi=Vi=(D+1)<bj<bj—1, V]

To complete the proof of the Directed Transportation Theorem we need to show that Step (7) succeeds
with high probability.

Lemma 4.8 The Fine-Tuning Algorithm succeeds in Step (7) with probability 1 — O(n™"), for some con-
stant v > 0.

Proof: From Lemma 4.3, Lemma 4.4 and Lemma 4.7 we have,
1 <a; —d;=0(logn), Vi
1§b]‘—b/]‘20(10gn)7 Vj

In Step (1) we set aside a certain fraction of the edge capacities. The reserved capacity for an edge
(¢,7) is 1 with probability at least /K, which is fixed independent of n; the reserved capacity of an edge
is 0 with probability at most 1 — (6/K). Moreover, the algorithm sets aside the capacities independently
for each edge. For each supply or demand in the residual problem, the lower bound is L(n) = 1 and the
upper bound is U(n) = O(logn). It is clear that the residual problem at this stage completely satisfies the
requirements of the Fine-Tuning Theorem. The Fine-Tuning Algorithm is now applicable to the supplies

a — @ and the demands b — b.

4.5 Application to the Directed Max-Flow Problem

We now apply the Directed Transportation Theorem to the solution of a probabilistic version of the directed
max-flow problem. Consider the instances of the max-flow problem where the underlying graph is directed

and the following conditions are satisfied.
(a). S={s}, T=A{t}and I ={1,2,...,n}
(b). Vi€ I, ¢(s,1) = a; and ¢(i,t) = b;

(c). Vi,j € I, where i # j, the capacities ¢(¢, j) arei.i.d. random variables drawn from the set {0,1,2,..., K'}

with expectation at least 1 + ¢, where € > 0

(d). The pair (a,b) is (D + 1, oo)-realizable for some constant D > 0
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Observe that our assumption (d) is weaker than assuming that (a,b) is (D + 1)-realizable. We will
exhibit a linear time reduction from such instances of the max-flow problem to instances of the directed
transportation problem satisfying the conditions for the Directed Transportation Theorem. This leads to

a linear time algorithm for the max-flow problem and proves the following,

Theorem 4.5 (Directed Max-Flow Min-Cut Theorem) Let I be an instance of the directed maa-
flow problem satisfying conditions (a)-(d). With high probability, the cut consisting of all edges leading out
of the source (or into the sink) is a minimum cut. Moreover, there exists a linear time algorithm to find a

mazimum flow in I, with high probability of success.

We now specify the linear time reduction which will prove the above theorem. Let I be an instance
of the max-flow problem satisfying conditions (a)-(d). We will reduce I to an instance C' of the directed
transportation problem. Construct a directed bipartite graph B as follows. Let S" = {sq,s2,...,s,} and
T = {t1,tq,...,t,} denote the bipartite vertex set for B. Associate with each source vertex s; the supply
a; and with each sink vertex ¢; associate the demand b;. Every edge (s;,t;) is present and all edges are
directed from S’ to T'. Let ¢(s;,t;) = ¢(i,7) for i # j. We choose ¢(s;,t;) = oo, for each i. It is now easy
to see that a feasible flow for C' can always be transformed (in linear time) to a feasible flow for I which

saturates all edges leading out of s. Clearly, this would be a maximum flow for [.

To apply the Directed Transportation Algorithm to the instance C', we must make a small modification
in Step (2). We first construct a (D + 1, co)-realization of (a, b) instead of the (D + 1)-realization. Notice
that this does not effect the rest of the algorithm or its analysis, provided we ignore the “diagonal” edges in
the remaining steps of the algorithm. The Directed Transportation Theorem, when applied to C', implies
that ' is almost surely feasible. Since the Directed Transportation Algorithm will almost surely find a

feasible flow for C', we can now derive, in linear time, a maximum flow for /.

5 Further Work

Generalizations of current results: The results presented above could be extended in many directions.
It would be interesting to consider different distributions for the edge capacities. We could also look at
the case of sparse graphs, i.e. graphs where the probability of an edge, p(n), is small. Another possibility
is to consider instances of the directed transportation problem where K = K (n) and € = ¢(n), where the

former goes to infinity with n while the latter goes to zero as n approaches infinity.

Large Diameter Graphs: It has been empirically observed that most network flow algorithms tend to
have their worst performance on graphs of large diameter. It would be interesting to consider flows on
random graphs which have large diameters. This could be done by considering sparse graphs or random

layered graphs where the diameter can be increased by increasing the number of layers of vertices.

Mimicking Deterministic Solutions: It should be possible to apply this technique to other problems.
In particular, we might consider probabilistic instances of Multi-commodity Flow problems as a natural
extension of the problems considered above. Another possibility is the Minimum-Cost Flow problem. Of

coutsesthereis-no-reason-why-this technique should work only for flow problems.
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