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ow problem and capacitated transportation problems. These algorithms run in linear time and, undercertain assumptions about the probability distribution of edge capacities, obtain an optimal solutionwith high probability. The design of our algorithms is based on the following general method, which wecall the mimicking method, for solving problems in which some of the input data is deterministic andsome is random with a known distribution:1. Replace each random variable in the problem by its expectation; this gives a deterministic probleminstance that has a special form, making it particularly easy to solve;2. Solve the resulting deterministic problem instance;3. Taking into account the actual values of the random variables, mimic the solution of the determin-istic instance to obtain a near-optimal solution to the original problem;4. Fine-tune this suboptimal solution to obtain an optimal solution.We present linear time algorithms to compute a feasible 
ow in directed and undirected capacitatedtransportation problem instances. The algorithms are shown to be successful with high probabilitywhen the probability distribution of the input data satis�es certain assumptions. We also considerthe maximum 
ow problem with multiple sources and sinks. We show that with high probability theminimum cut isolates either the sources or the sinks, and we give a linear-time algorithm that producesa maximum 
ow with high probability.
�Computer Science Division, University of California, Berkeley, CA 94720. Supported by NSF Grant DCR-8411954.yDept. of Computer Science, Stanford University, Stanford CA 94305. Supported by NSF Grant CCR-9010517. Part ofthis work was done when the author was at the Computer Science Division, University of California, Berkeley and supportedby NSF Grant DCR-8411954.zHebrew University, Israel. Supported by NSF Grant DCR-8411954. Part of this work was done when the author was atthe Computer Science Division, University of California, Berkeley.



www.manaraa.com

1 IntroductionProbabilistic analysis of combinatorial problems has been the subject of many recent investigations [KLMR].The starting point for such analysis is the assumption that the problem instances are drawn from a prob-ability distribution. Under this assumption one studies the behavior of the solution to the combinatorialproblem or the performance of some algorithm. The analysis often establishes that certain quick-but-dirtyalgorithms produce optimal or near-optimal solutions with high probability. In this paper we will beconcerned with devising quick-but-dirty algorithms of this type for some combinatorial problems.The problems considered here are all closely related to the maximum 
ow problem. In particular, wepresent fast (linear time) algorithms for the maximum 
ow problem and certain versions of the trans-portation problem; these algorithms are guaranteed to succeed with high probability if the probabilitydistribution of the inputs satis�es certain assumptions. A key part of our work is the formulation andapplication of a new technique for solving problems with probabilistic inputs. We call this technique theprobabilistic mimicking of deterministic solutions. The mimicking paradigm works as follows:STAGE 1 (Deterministic Relaxation) Suppose we are given a problem instance P ( ~X; ~Y ) with param-eters (or input) ~X and ~Y . The vector ~X represents the random values and the vector ~Y representsthe deterministic values. Construct a deterministic relaxation of P by replacing each random variableby its expected value. We now have a deterministic problem instance P (Exp[ ~X]; ~Y ).STAGE 2 (Solution of Deterministic Relaxation) Construct a solution to the new problem instanceP (Exp[ ~X]; ~Y ). This instance is typically of a special form for which a highly e�cient algorithm isavailable.STAGE 3 (Mimicking Process) Construct a solution to the original problem instance P ( ~X; ~Y ) bymimicking the solution constructed in the previous step. The exact form of the mimicking processwill depend on the problem under consideration. The idea is to use the solution of the deterministicrelaxation as a guide in solving the original problem instance.STAGE 4 (Fine Tuning) In this stage we �ne-tune the solution obtained in the previous stage to comeup with an optimal solution to the original problem instance. The �ne-tuning process is highlye�cient because, with high probability, the solution resulting from the mimicking process is alreadyclose to the optimal.The paper is organized as follows. The rest of this section is devoted to the de�nition of the problemsunder consideration and a brief discussion of our results, as well as their relation to the previous work inthis area. In Section 2 we present some preliminary results which will prove useful in deriving our maintheorems. In particular, we will describe a �ne tuning algorithm which will implement the last stage of ourparadigm. In Section 3 we present algorithms for the undirected transportation problem and the max-
owproblem. In Section 4 we present an algorithm for the directed transportation problem. Finally, in Section5, we discuss further work along these lines. 1
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1.1 Problem De�nitionsWe start by de�ning the three problems under consideration. These are the Maximum Flow Problem,the Supply Demand Problem and the Capacitated Transportation Problem. We also present the classicminmax theorems associated with each of these problems (see [La] for more details). The problems arede�ned for the case of directed graphs (digraphs) only. These de�nitions apply to undirected cases also ifwe look upon each undirected edge (u; v) as representing the two directed edges (u; v) and (v; u).Maximum Flow Problem: Let G be a digraph with vertices V = S [ I [ T , where S represents thesource vertices, T represents the sink vertices and I represents the intermediate vertices. Let E representthe set of directed arcs in the digraph G. A capacity function, c : E ! <+, assigns a non-negative realnumber c(u; v) to every arc (u; v) in E. An instance of the max-
ow problem consists of a digraph D anda capacity function c.Given an instance of a max-
ow problem a function, f : E ! <+, is called a 
ow function if it satis�esthe following constraints, 0 � f(u; v) � c(u; v); 8(u; v) 2 EX(v;w)2E f(v; w) = X(w:v)2E f(w; v); 8v 2 ILet f(A;B) = Pa2A;b2B f(a; b) where A;B � V . The value of a 
ow function, val(f), can be de�ned asfollows, val(f) = f(S; V � S)� f(V � S; S) = f(V � T; T )� f(T; V � T )The max-
ow problem is to �nd a maximum-value 
ow function on a given instance of a 
ow problem.This problem has been studied quite extensively and the fastest known algorithm is due to Alon [Al](see also [GT, CH]) which runs in O(nm logn) time, where n = jV j and m = jEj. In the case of densegraphs the best max-
ow algorithm known requires O(n3) time. We assume that the reader is familiarwith the basic theory of network 
ows. This includes the notion of a cut and the capacity of a cut, as wellas the following theorem.Theorem 1.1 (Max-
ow Min-cut Theorem) The maximum value of an (S; T )-
ow is equal to theminimum capacity of an (S; T )-cut.Supply-Demand Problem: An instance of the supply-demand problem consists of a digraph G(V;E)and a capacity function c as before, and also a collection of supplies and demands associated with thesources and the sinks, respectively. Associated with every source vertex s 2 S is a non-negative numberas called the supply at s. Similarly, associated with every sink vertex t 2 T is a non-negative number btcalled the demand at t. The supply-demand problem is to �nd a feasible 
ow, viz. a 
ow which meets thedemands at T from the supplies available at S. More formally, we are looking for a 
ow f : E ! <+ whichsatis�es the following conditions, 0 � f(u; v) � c(u; v); 8u; v 2 V2
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f(s; V � fsg)� f(V � fsg; s) � as; 8s 2 Sf(v; V � fvg)� f(V � fvg; v) = 0; 8v 2 If(V � ftg; t)� f(t; V � ftg) � bt 8t 2 TLet a(X) = Pv2X av when X � S, similarly de�ne b(X) = Pv2X bv for X � T . Let c(X; �X) denotethe capacity of the (X; �X) cut in G. The following theorem [La] gives necessary and su�cient conditionsfor a feasible 
ow to exist in an instance of the supply-demand problem.Theorem 1.2 (Supply-Demand Theorem) A feasible 
ow exists in the supply-demand problem if andonly if the following inequality holds for every subset X � V .b(T \ �X)� a(S \ �X) � c(X; �X)This theorem requires that for every X � V the excess of demands over supplies in �X must be lessthan the total capacity of the edges leading out of X . There is an easy transformation from an instance ofa supply-demand problem to an instance of a max-
ow problem and vice versa.Capacitated Transportation Problem: The capacitated transportation problem is a special case ofthe supply-demand problem. In this problem we have no intermediate vertices, i.e. I = ;, and the graphis bipartite between S and T . We will only consider the cases where the sum of all the supplies is equal tothe sum of all the demands. The Supply-Demand Theorem when applied to the transportation problemyields the following.Theorem 1.3 (Transportation Theorem:) A feasible 
ow exists in an instance of the transportationproblem if and only if the following condition holds for every subset X � S.Xx2X ax �Xt2Tmin(bt; c(X; ftg))Probabilistic Formulation: For each of these problems we will make two probabilistic assumptions:1. each edge is present in the graph with probability p(n), independent of the other edges.2. the capacities of the edges are i.i.d. random variables which have bounded support.In certain cases the probabilistic assumptions will only apply to some subset of the edges in the completegraph. For example, we will assume that a certain subset of the edges is always present (or absent) whilethe rest satisfy the �rst probabilistic assumption. We will also consider the case where certain edges have�xed (or deterministic) capacities while the rest satisfy the second probabilistic assumption.1.2 Previous Work and Main ResultsThe study of random graphs was initiated by Erd�os and R�enyi in 1959 [ER1]. The theory of randomgraphs is concerned with graphs drawn from certain probability spaces. A well-studied random graph3
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[Bo] is called Gn;p, where n is a positive integer and 0 � p(n) � 1. The probability space consists of allgraphs on the vertex set V = f1; 2; � � �ng. In the graph Gn;p, the probability that an edge is present is pindependently for each edge. In other words, the probability of any graph with e edges is pe(1 � p)N�e,where N = n(n � 1)=2. Similarly, we de�ne the random graph Bn;p which is chosen from the space ofall bipartite graphs on the vertex set V = S [ T , where jSj = jT j = n. Independently for each edge, theprobability that the graph Bn;p contains that edge is p.We shall require methods for �nding perfect matchings in random graphs. A perfect matching in anundirected graph G = (V;E) is a spanning subgraph in which each vertex in V has degree one. Consideran instance of the transportation problem in which the underlying bipartite graph has all its edges directedfrom the sources to the sinks. The problem of �nding a perfect matching in a bipartite graph is the specialcase of this directed transportation problem where all the supplies, demands and capacities are set toone. The problem of �nding a perfect matching in a random bipartite graph Bn;p is a special case of theprobabilistic transportation problem. Erd�os and R�enyi [ER2, ER3] proved the following theorem aboutthe existence of perfect matchings in random bipartite graphs.Theorem 1.4 Let p(n) = lnn+cn�1 , where c is some constant. Then, for B = Bn;p,limn!1Prob[B has a perfect matching] = e�2e�cAngluin & Valiant [AV] gave a fast algorithm, called the Proposal Algorithm, to construct a bipartitematching. This algorithm works in O(nlogn) time and, with high probability, constructs a perfect matchingin a random bipartite graph, provided that p(n) is large enough. They obtained the following result.Theorem 1.5 For all � > 0, there exists � > 0 such that if p(n) > �lognn then, for B = Bn;p,Prob[Proposal Algorithm fails on B] = O(n��)Goldschmidt & Hochbaum [GH] gave a greedy algorithm which improves upon the running time of theProposal Algorithm. The greedy algorithm works for random graphs where p > 
 lnn=n and, with highprobability, computes a perfect matching in time O(n log 1p). This algorithm uses the Proposal Algorithmas a sub-routine and the constant 
 is larger than the constant in the result of Angluin & Valiant. However,unlike the Proposal Algorithm, the greedy algorithm has a running time which decreases with increasingdensity of the random graph. A di�erent type of result was obtained by Motwani [Mo1, Mo2] who showedthat the O(pnm) algorithms for bipartite and non-bipartite matchings perform exceedingly well when theinput is a random graph. In particular, it was shown that if the input random graph has p(n) > logn=nthen these deterministic matching algorithms terminate in time O(mlogn=log(np)) time. Even though thisrunning time is strictly greater than that of the Proposal Algorithm or the Greedy Algorithm, these resultsapply to a wider class of random graphs.Consider now the Max-Flow problem where jSj = jT j = 1 and the edge capacities are i.i.d. randomvariables. This problem was considered earlier by Frank & Hakimi [FrHa] and Frank & Frisch [FrFr]. Theystudied the random variable val(f) under the above assumptions and obtained results about its probability4
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distribution. Karp [Ka], Grimmett & Welsh [GW] and Grimmett & Suen [GS] obtained strong asymptoticresults for complete graphs with i.i.d. edge capacities. In particular, they showed that the minimum cutis almost surely the set of edges incident on the source or those incident on the sink. These results are allexistential and do not yield any fast algorithms to construct the maximum 
ow.Doulliez & Jamoulle [DJ] proposed a decomposition method to determine the existence of a feasible
ow in an instance of the transportation problem when the edge capacities are i.i.d. random variables.There are also results concerning bounds on the probability of existence of a feasible 
ow in probabilistictransportation problems [PB]. Hassin & Zemel [HZ] studied the probabilistic version of the transportationproblem where the underlying graph is complete and the edge capacities are random variables. A collectionof random variables fck : k 2 Kg is said to be proper with respect to a constant � if for each y � 0 andeach k 2 K, Prob[ck � y j S] � �y. Here S represents any conditioning event concerning the variablesfcl : l 2 K; l 6= kg. Hassin & Zemel considered the case where the edge capacities form a proper collectionand the supplies/demands are bounded from above. In e�ect, the \properness" condition requires thateach edge capacity be positive. This means that the underlying graph must be complete. Under theseassumptions, they presented an algorithm which, with high probability, computes a feasible 
ow in lineartime. Hochbaum [Ho] studied the 0/1 maximum 
ow problem under the assumption that the underlyinggraph is chosen from Gn;p, where p(n) = 
(pnlogn=n). Since all edge capacities are either 0 or 1, thisproblem is equivalent to that of �nding a maximum collection of vertex-disjoint paths from source tosinks. Hochbaum presented a sublinear time heuristic algorithm which, with high probability, computes amaximum 
ow in the random instances described above.Our main results are as follows (some of these results are from the second author's dissertation [Mo1]).We �rst consider the undirected transportation problem where the edge capacities are random variablesand there is a bound on the size of the supplies/demands. We also consider the directed transportationproblem where the edge capacities are random variables and the supplies/demands satisfy a realizabilitycondition. For both kinds of transportation problems we present linear time algorithms which compute afeasible 
ow with high probability. We look at the max-
ow problem where the edge capacities are i.i.d.random variables. Here we show that the minimum cut is almost surely the cut isolating the sources orthe sinks. Again, we present a linear time algorithm that solves such max-
ow problem instances, withhigh probability. Our results are essentially the best possible under the natural probabilistic assumptionsbeing made. For example, in the case of the transportation problems we assume that the demand at anode is smaller than the expected capacity of the edges coming into it by a small factor (roughly logn).For signi�cantly larger demands it is not possible to guarantee that the problem has a feasible solutionwith reasonably high probability.2 PreliminariesIn this section we describe two special cases of the 
ow problems under consideration. The �rst problemis concerned with the supply-demand problem in a non-probabilistic setting where all capacities are 0/1.The second problem is a special case which arises in the last stage of our mimicking paradigm, viz. the5
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�ne-tuning stage. We present an algorithm for handling this version of the problem.2.1 Realization of 0/1 MatricesThe following notion of realizability of 0/1 matrices will prove useful in the description of our algorithms.Let R = (r1; r2; . . .rm) and C = (c1; c2; . . .cn) denote two vectors with non-negative integral entries. Thepair (R;C) is said to be realizable if and only if there exists a 0/1 m�n matrix M = M(R;C) with R andC as its row-sum and column-sum vectors, respectively. The matrix M(R;C) is called a realization of thepair (R;C). The realizability problem is to compute the realization of a pair of row-sum and column-sumvectors.The realizability problem is closely related to the capacitated transportation problem. Consider in-stances of the transportation problem where the underlying bipartite graph is complete with all edgesdirected from S to T and of capacity one. It is easily seen that �nding a feasible 
ow in such trans-portation problem instances with the integral supply-demand vectors (A;B) is equivalent to �nding therealization of the pair (A;B). Ryser [Ry] and Gale [Ga] gave necessary and su�cient conditions for a pair(R;C) to be realizable. There is a simple greedy algorithm [FoFu, FR, Ga] to construct the realizationmatrix provided it is feasible. This algorithm works in linear time.A variant of the realization problem is where all the diagonal entries in the matrix are unbounded(positive integers) and while the o�-diagonal entries are required to be 0/1. Let M1(R;C) denote arealization of the row and column sums as a matrix where the diagonal entries are unbounded. Motwani[Mo3] provided a nearly-linear time algorithm to construct M1(R;C), when feasible.Another notion of realizability will also be used in our algorithms. Let R and C be as before. Also,let �R = R �D:~1 and �C = C �D:~1, where D is a positive integer and ~1 represents the vector with a 1 ineach entry. The pair (R;C) is said to be D-realizable if the pair ( �R; �C) is realizable. Finally, we will calla pair (R;C) as being (D;1)-realizable if the pair (R�D:~1; C �D:~1) has a realization with unboundeddiagonals. A D-realization of the pair (R;C) will be denoted by MD(R;C) = M( �R; �C).2.2 A Fine-Tuning AlgorithmThe �nal stage of our mimicking paradigm involves the �ne tuning of the solution obtained by the mim-icking process. The algorithm described below will be used for this purpose. Consider an instance of thetransportation problem with the underlying undirected bipartite graph G(S[T;E) satisfying the followingconditions.(a). jSj = jT j = n(b). for each i 2 S and j 2 T , the supply ai and the demand bj are positive integers such that 0 < L(n) � aiand bj � U(n) < qnL(n)logn(c). Pi2S ai =Pj2T bj 6
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(d). each edge, independently, is present with probability p(n) and has capacity 1Here L denotes some arbitrary function of n. Note the above conditions imply that 0 < L; U � n= logn;for supplies and demands much larger than this it is impossible to guarantee that a feasible solution existswith high probability.The following algorithm uses the Proposal Algorithm [AV] as a sub-routine. It �rst decomposes thetransportation problem instance into U(n) instances of the matching problem for random bipartite graphs.The algorithm constructs U(n) bipartite graphs ensuring that each vertex occurs in exactly as many ofthese graphs as its supply or demand. The edges from the graph G are equiprobably distributed amongthe U(n) subgraphs. It is shown that, with high probability, the Proposal Algorithm will �nd a perfectmatching in each of these subgraphs. The algorithm sends one unit of 
ow along each edge which is in theunion of the perfect matchings found by the Proposal Algorithm. This is the required 
ow.Let Ai =Pir=1 ar and Bj =Pjr=1 br, where A0 = B0 = 0.The Fine Tuning AlgorithmStep (1). Construct U bipartite graphs G0; . . .GU�1 with vertex sets S0; . . .SU�1 and T 0; . . .TU�1 asfollows. Place each vertex si 2 S in the vertex sets S(Ai�1+1) mod U ; . . .SAi mod U . Similarly, placeeach vertex tj 2 T in the vertex sets T (Bj�1+1) mod U ; . . .TBj mod U .Step (2). Color each edge (si; tj) 2 E independently and equiprobably with one of U colors.Step (3). For each edge (si; tj) 2 E, place it in E(Gk) if and only if it has color k and si 2 Sk, tj 2 T k .Step (4). Using the Proposal Algorithm, �nd a perfect matching in each of the U subgraphs generatedin the previous steps. Let F � E denote the union of the U perfect matchings.Step (5). Saturate in the forward direction all the edges in F . This 
ow will be a feasible solution to thetransportation problem instance under consideration.The following theorem results.Theorem 2.1 (Fine-Tuning Theorem) For all � > 0, there exists � > 0 such that p(n) > �U2lognnLimplies that the Fine-Tuning Algorithm �nds a feasible 
ow in the transportation problem instance inO(n2) time with probability 1� O�U� UnL���.Proof: The following claims will constitute the proof of this theorem. First, note that our constructionensures that the number of sources and sinks is equal in each of the U graphs being constructed. Let nkdenote the number of sources or the number of sinks in the graph Gk, i.e. nk = jSkj = jT kj.Claim 2.1 bnLU c � nk � n, 8k 2 [0; U � 1].The validity of Claim 2.1 is established as follows. Clearly, the number of source nodes in each graph Gkis at least bAnU c, where An is the sum of all the supplies. By condition (b), we have that An must be atleast nL and this implies the desired result. A similar argument works for the case of the sink vertices.7
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Claim 2.2 limn!1 nk =1.Claim 2.2 is proved as follows. By Claim 2.1 and condition (b), we have that nk is at least bnLU c. Weare also given that U < q nLlogn . We conclude that nk > nL=U > U logn. Since U > 0, the desired resultfollows. The next claim follows from the construction described in Step (1).Claim 2.3 Each si (tj) occurs once each in exactly ai (bj) of the U subgraphs constructed in Step (1).It is clear that in each of the U subgraphs the edges are present independently of other edges in the samesubgraph although there is dependence between two such subgraphs. Let pk be the probability that anedge is present in the graph Gk. We are given that p(n) > �U2lognnL . Since each edge is placed in one of Ugraphs chosen uniformly at random, we have the following claim.Claim 2.4 pk = p(n)U(n) � � lognknk .The Proposal Algorithm will succeed in �nding a perfect matching in Gk in O(nlogn) time with prob-ability 1� O �� UnL���, when pk > �lognknk . The relation between � and � is the same as for the ProposalAlgorithm. The probability that the Proposal Algorithm does not succeed on all Gk is bounded from aboveby the sum of the probabilities of failure on each of the U matching problems. This probability can beseen to be suitably bounded.The running time of the entire process can be determined as follows. Step (1) takes time O(Un) andthis is clearly O(n2). Since the number if edges is at most n2, Step (2) takes time O(n2). Each call tothe Proposal Algorithm takes time O(nlogn) and there are at most U(n) � n=logn such calls. Thus, Step(3) also takes time O(n2). The time required for Step (4) is proportional to the total supply at the sourcenodes. This quantity is O(n2).We make two remarks about the generality of this algorithm. First, note that the algorithm uses eachedge in the forward direction only. The algorithm would work equally well in the case where the edgesare directed, though it would not send any 
ow along edges which are directed from T to S. Also, thealgorithm does not actually require that jSj = jT j = n. A careful examination of the proof shows that itwould be su�cient to have U2lognLp(n) � jSj; jT j � n, where n is now the size of the larger of the two vertexsets. We need to impose these bounds on the sizes of S and T to ensure that nk (in Claim 2.1) cannot betoo small or too large.We could have used the Greedy Algorithm due to Goldschmidt & Hochbaum [GH] instead of theProposal Algorithm to obtain the Fine Tuning Algorithm. In fact, as the analysis of Motwani [Mo2] shows,we could have used Dinic's algorithm [Di] for bipartite matchings as well. Using the Greedy Algorithmwill, in general, improve the running time of the Fine Tuning Algorithm described above. However, it turnsout that in the applications of the Fine Tuning Algorithm described in later sections the overall runningtimes are not a�ected by the use of the Greedy Algorithm instead of the Proposal Algorithm. The use ofDinic's algorithm would have allowed us to apply the Fine Tuning Algorithm to graphs with even smallerdensity. Again, this is not really required in the algorithms which will be presented below.8
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3 The Undirected Transportation ProblemWe now present an algorithm to solve certain instances of the transportation problem where the underlyinggraph is undirected. Let D(n) be a positive function such that D(n) < n2plogn . Consider an instance ofthe transportation problem which satis�es the following conditions.(a). the underlying graph G(S [ T;E) is undirected and jSj = jT j = n(b). the probability that an edge from S�T is present is p (a positive constant), and if an edge is presentthen its capacity is 1(c). Pu2S au =Pv2T bv, and all supplies and demands are non-negative integers(d). 8u 2 S, au < pD(n) and 8v 2 T , bv < pD(n)We will show that the transportation problem instances satisfying these conditions are feasible with highprobability. This will be done constructively by specifying a linear time algorithm which succeeds in �ndingthe feasible 
ow with high probability. Once again note that the supply or demand at a node is only slightlysmaller than the expected capacity of the edges incident at it. This is essential to guarantee feasibility.The following theorem results.Theorem 3.1 (Undirected Transportation Theorem) The Undirected Transportation Algorithm �ndsa feasible 
ow for transportation problem instances satisfying conditions (a)-(d) in linear time with proba-bility 1�O(n�
), where 
 > 0 is a constant which depends on p.The expected value of the capacity of any edge is p. Consider the deterministic relaxation of the aboveproblem. It would correspond to �nding a feasible 
ow for the supplies ai and the demands bj in the casewhere the underlying undirected graph is complete with all edges having capacity p. It is not very hard toshow that the deterministic problem has a feasible solution. However, we will need to �nd a feasible 
owusing the edges in the forward direction only. In this directed case, the problem need not have a feasiblesolution at all, e.g. consider the case where a1 = b1 = 2 and all other supplies and demands are 0. Toget around this problem we will add a large number E(n) to each supply and demand. Now we will beable to �nd a feasible 
ow for the deterministic relaxation using edges in the forward direction only. It hasbeen observed [HZ] that a transportation problem instance is feasible provided the values of the suppliesand demands are su�ciently uniform. Uniformity of the supplies and demands requires that the supply(demand) at a source (sink) is in proportion to the net capacity of the edges incident at that source (sink).In a sense, adding E(n) to each supply and demand corresponds to making their values uniform, since theexpected total capacity of the edges incident at each vertex is equal.The Undirected Transportation Algorithm is based on the mimicking paradigm. The �rst stage ofthis algorithm constructs a solution to the deterministic relaxation of the original problem. To simplifythe algorithm, we will scale up the deterministic relaxation by a factor of c = 1=p. This corresponds tomultiplying all capacities, supplies and demands by a factor of c. The original problem instance does not9
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need to be scaled. Let us choose E(n) = n2 logn . De�ne a0u = cau +E(n) for all u 2 S, and b0v = cbv +E(n)for all v 2 T . Also, let a0 be the s-dimensional vector (a0u) and b0 the t-dimensional vector (b0v). Thedeterministic problem is an undirected transportation problem with (a0; b0) as the supply-demand vectorsand all edges of capacity cp = 1. We will use all edges in the forward direction only and so the deterministicproblem is exactly that of �nding a realization of (a0; b0).The �rst stage of the algorithm constructs a realization of the pair (a0; b0), viz. the 0/1 n � n matrixM(a0; b0). This corresponds to the deterministic solution of the transportation problem instance with allrandom variables (in this case, the edge capacities) replaced by their expected values. In the secondstep we mimic the solution of the deterministic relaxation by saturating the edges (if present) whichcorrespond to the non-zero entries in M(a0; b0). The 
ow is sent in the forward direction, i.e. from S toT . Finally, using the edges in the backward direction we �ne-tune the solution to obtain a feasible 
owfor the transportation problem instance under consideration. The �ne-tuning will take care of the errorintroduced at the mimicking stage, as well as the any extra 
ow caused by the addition of E(n) to thesupplies and demands in the scaled version of the deterministic relaxation.The Undirected Transportation AlgorithmStep (1). [Deterministic Relaxation] Construct the 0/1 n � n matrix M(a0; b0). The pair (a0; b0) musthave only integral entries for the realization to be feasible. This can be ensured by rounding up orrounding down each a0u, b0v while still satisfying the condition Pu2S a0u =Pv2T b0v.Step (2). [Mimicking Process] Saturate in the forward direction all existing edges which correspond tothe 1's in M(a0; b0). This yields a 0/1 n � n 
ow matrix N . Let the row-sum and the column-sumvectors of this matrix be �a and �b, respectively.Step (3). [Fine Tuning] At this point each u 2 S has sent an excess of �au � au units of 
ow, while eachv 2 T has received an excess of �bv � bv units of 
ow. Using the Fine-Tuning algorithm and all edgesin the backward direction, send out �bv � bv units of 
ow from each v 2 T . Ensure that each u 2 Sreceives exactly �au � au units of 
ow.Step (4). Combine the 
ows constructed in the two previous steps to obtain the desired feasible 
ow.3.1 Analysis of the Undirected Transportation AlgorithmWe will prove the Undirected Transportation Theorem with the help of the lemmata presented below.Lemma 3.1 establishes that the �rst step of the algorithm will succeed by showing that the pair (a0; b0) isrealizable. The realization algorithm will construct the matrix M(a0; b0) in linear time given its feasibility.Lemma 3.1 The pair (a0; b0) is realizable. 10
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Proof: Consider a transportation problem instance I with jSj = jT j = n. Assume that all edges fromS � T are present. Let each edge have capacity 1 and be directed from S to T . Let a0u be the supplyat u 2 S, and b0v the demand at v 2 T . The Integrality Theorem for 
ow problems can be applied tothis transportation problem instance. It implies that, in a feasible transportation problem instance, if allsupplies, demands and capacities are integral then there is an integral feasible 
ow. The rounding processin Step (1) ensures that the supplies and demands are integral, while all capacities are 1 in I. Thus, wehave that I is feasible if and only if the pair (a0; b0) is realizable. We invoke the Transportation Theoremto establish the feasibility of I.By the Transportation Theorem, I is feasible if and only if 8X � SXu2X a0u �Xv2T min(b0v; c(X; fvg)) (1)In this case, c(X; fvg) = x for all v 2 T , where x = jX j. Note that the following bounds hold for a0 and b0,E(n) � a0u � E(n) +D(n); 8u 2 SE(n) � b0v � E(n) +D(n); 8v 2 TWe now perform a case analysis on the value of x to establish the validity of inequality (1).Case 1 [x � E(n)] :In this case the inequality (1) is equivalent to the following inequality.Xu2X a0u � xnSince n > E(n) +D(n) the above inequality, and hence (1) is valid.Case 2 [x > E(n)] :In this case the inequality (1) is implied by the following inequality.Xu2X a0u � Xv2Y b0v + x(n� y); 8Y � T; y = jY j (2)Since each a0u � E(n) +D(n), we have that AX =Pu2X a0u � x(E(n) +D(n)). Clearly, this quantityAX is less than x(n � y) when y � n � E(n) � D(n). It follows that the inequality (2) is valid wheny � n�E(n)�D(n). Therefore, we only need to consider the case where x > E(n) and y � n�E(n)�D(n).Using the bounds on the supplies and demands, we obtain the following inequality.Xu2X a0u = Xu2S a0u � Xu2SnX a0u� Xv2T b0v � (n� x)E(n)� Xv2Y b0v + Xv2TnY b0v � (n� x)E(n)11
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Using Pv2TnY b0v � (n� y)(E(n) +D(n)), the above inequality implies that the inequality (2) is validif the following inequality (3) is valid for n�D(n)�E(n) � y � n.(n� y)(E(n) +D(n))� (n� x)E(n) � x(n� y) (3)If x > E(n)+D(n) then it is easy to see that the inequality (3), and hence (2), must be valid. Therefore,we are only left with the case where E(n) � x � E(n) + D(n) and n � D(n) � E(n) � y � n. Usingx � E(n) and the fact that n� y � E(n)+D(n), we obtain that the inequality (3) is valid if the followinginequality holds. (E(n) +D(n))D(n) � (n�E(n))E(n)This inequality can easily be veri�ed for our choice of the values of E(n) and D(n).We now turn to Step (2) of the algorithm. The next lemma bounds the values of the excess 
ow sentby the sources and the excess 
ow received by the sinks. Let F (n) = D(n) +E(n).Lemma 3.2 In the Undirected Transportation Algorithm8
 > 0; 9l > 0 Prob[9u 2 S : j�au � pa0uj � lqF (n) logF (n)] = O(n�
)8
 > 0; 9l > 0 Prob[9v 2 T : j�bv � pb0vj � lqF (n) logF (n)] = O(n�
)Proof: Let X be the sum of r Bernoulli trials, where each trial assumes the value 1 with probability pand value 0 with probability 1� p. The Cherno� bound [Ch] as applied to the tail of binomial distributionstates that for any �, such that 0 � � � 1,Prob[jX � rpj � �rp] � 2e(��2rp=3)The number of non-zero entries in each row or column of the matrix M(a0; b0) is at least E(n) and atmost F (n). This is the number of trials in a Bernoulli process where each trial is successful with probabilityp(n). An application of the Cherno� bound for the tail of the binomial distribution completes the proofof the lemma.At this stage we are guaranteed that the following bounds hold (with high probability).pE(n)� lqF (n) logF (n) � �au � au � pE(n) + lqF (n) logF (n); 8u 2 S (4)pE(n)� lqF (n) logF (n) � �bv � bv � pE(n) + lqF (n) logF (n); 8v 2 T (5)Step (3) of the algorithm uses the edges in the backward direction to route the excess 
ow back fromsinks to sources. It is clear that au, a0u, bv and b0v are all integral as required for the application of theFine-Tuning Algorithm. The bounds on the excess, (4) and (5), together with the Fine-Tuning Theoremyields the following lemma. 12



www.manaraa.com

Lemma 3.3 The Fine-Tuning Algorithm succeeds in Step (3) with probability 1�O(n��), where � > 0 isa constant which depends on p.The probability of failure of each stage of the algorithm is now suitably bounded from above. We nowobserve that the probability of failure of the entire algorithm is bounded from above by the sum of theprobabilities of failure of the various steps in the algorithm even though they may not be independent.This completes the proof of the Undirected Transportation Theorem. Note that we cannot choose E(n)to be larger than nlogn if we wish to employ the Fine-Tuning Theorem as above. The proof of Lemma 3.1requires that E(n) should not be much smaller than D(n). This imposes an upper bound of nplogn onD(n).We observe that the Undirected Transportation Algorithm can also be applied to certain cases wherejSj 6= jT j. The proof of the Undirected Transportation Theorem is easily seen to extend to the case wherejSj 6= jT j provided jSj, jT j are large enough, i.e. that they should be substantially larger than D(n) andE(n). Note that to be able to apply the Fine-Tuning Algorithm in the case where jSj 6= jT j, we again needthat jSj and jT j should be substantially larger than E(n).3.2 The Undirected Max-Flow ProblemWe now make use of the Undirected Transportation Theorem to devise an algorithm to solve a probabilisticversion of the undirected max-
ow problem. Consider an instance of the max-
ow problem satisfying thefollowing conditions.(a). the underlying graph is undirected(b). jSj = jT j = r and jI j = n, where r � n may depend on n(c). each edge is present with a probability p (a positive constant) and if an edge is present then itscapacity is 1We assume, without loss of generality, that the (S; V � S) cut has a smaller capacity than the (V � T; T )cut. If this is not the case then we can interchange the roles of the source and sink vertices and reversethe direction of each edge. We present the following theorem,Theorem 3.2 (Min-Cut Theorem) In instances of the probabilistic max-
ow problem satisfying condi-tions (a)-(c), Prob[The (S; V � S) cut is the minimum cut] = 1� O(n��)where � > 0 is a constant which depends on p.This theorem is proved by presenting a linear time algorithm, called the Max-Flow Algorithm, whichconstructs a 
ow saturating the (S; V � S) cut. Clearly, the value of the max-
ow is less than or equal tothe capacity of this cut. 13
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The Max-Flow Algorithm works in two stages. In the �rst stage, an instance of the probabilistictransportation problem is created such that a feasible solution to that instance will yield a 
ow saturatingthe (S; V � S) cut in the original problem. In the second stage it uses the Undirected TransportationAlgorithm to solve the transportation problem instance generated in the �rst stage.3.3 The Max-Flow AlgorithmOur aim is to �nd a 
ow which will saturate the (S; V � S) cut. Clearly, we can ignore edges drawn fromS � S and T � T . Moreover, all edges from S � T can be saturated (in the forward direction) withouta�ecting the 
ow through the remaining edges. We now consider only the edges from S � I , I � I andI � T . The algorithm will �nd a 
ow which will saturate all edges from S � I in the forward direction.For each v 2 I de�ne �v = c(S; v)� c(v; T ), this is the excess of the capacity of incoming edges overthe capacity of the outgoing edges.. Let I+ = fv 2 I : �v > 0g and I� = fv 2 I : �v < 0g. Furtherde�ne �+ = Pv2I+ �v and similarly �� = Pv2I� �v. We now describe the �rst stage of the Max-FlowAlgorithm. The Max-Flow AlgorithmStep (1). Saturate all edges from S � I by sending 
ow from sources to intermediate nodes.Step (2). Saturate all edges from I � T by sending 
ow from intermediate nodes to the sinks.Step (3). Since c(S; I) � c(I; T ) we have �+ + �� � 0. At this point, for each v 2 I , the excess ofin-
ow over out-
ow is exactly �v . Arbitrarily reduce 
ow along edges drawn from I� � T until thenet 
ow across the (S; I) cut equals the net 
ow across the (I; T ) cut. Ensure that, for each v 2 I�,the new excess 
ow, say �v , remains non-positive. Let �� = Pv2I� �v , then we have �+ + �� = 0and �v � �v � 0, for each v 2 I�.Step (4). Let G1 be the bipartite subgraph of the original underlying graph G which is induced by thevertex set S1 = I+ and T 1 = I�. Construct an instance of the capacitated transportation problemwith G1 as the underlying graph, supply �v for v 2 S1 and demand ��v for v 2 T 1.It is easy to see that the �rst stage works in linear time. In the second stage of the Max-Flow Al-gorithm we �nd a feasible 
ow for this transportation problem instance using the linear-time UndirectedTransportation Algorithm described earlier. The �nal 
ow is the sum of the two 
ows constructed in thetwo stages of the max-
ow algorithm. The following theorem results.Theorem 3.3 (Max-Flow Theorem) The Max-Flow Algorithm �nds a maximum 
ow for instancessatisfying conditions (a)-(c) in linear time with probability 1 � O(n��), where � > 0 is a constant whichdepends on p.Observe that the above algorithm will �nd a 
ow saturating the (S; V � S) cut if the second stagesucceeds. This 
ow will be a maximum 
ow. To complete the proof of this theorem we need to show that14
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the transportation problem instance generated by this algorithm satis�es the conditions of the UndirectedTransportation Theorem. We �rst prove the following bound on the size of the excess at each intermediatenode. This bound also applies to the size of the supplies and demands of the transportation probleminstance generated in the �rst stage. We also show that jI+j and jI�j are both fairly close to n=2.Lemma 3.4 In the Max-Flow Algorithm8
 > 0; 9k > 0; Prob[9v 2 I : j�vj > kpn logn] = O(n�
)Proof: The result holds for the case where r � pn since the maximum value of �v is then bounded bypn. We now consider the case where r > pn.Consider some v 2 I . Let Xv denote the number of edges from S � fvg which are actually present inthe underlying graph G. Similarly, let Yv denote the number of edges from fvg� T . Clearly, both Xv andYv are the sum of r independent Bernoulli trials where each trial assumes value 1 with probability p andvalue 0 with probability 1� p. We make use of the Cherno� bound [Ch] as applied to the tails of binomialdistributions. For any �, 0 � � � 1, we have,Prob[Xv � (1� �)rp] � e��2rp=2Choosing � = q b log rr , for some positive constant b, and applying the bound to both Xv and Yv we have,Prob[j�vj = jXv � Yv j � 2�rp] � 4r�bp=2Summing over all v 2 I and choosing b = 2(1 + 2
)=p and k =p8p(1 + 2
) we have,Prob[9v 2 I : j�vj � kpr log r] = O(r�2
)Since pn � r � n we have the desired result.Lemma 3.5 In the Max-Flow Algorithm8
 > 0; 9f > 0; Prob[j jI+j � n=2j > fpn logn] = O(n�
)Proof: In our de�nition of I+ and I� we ignored the vertices v 2 I for which �v = 0. Since thesevertices can be assigned to either set, they can be used to balance the sizes of I+ and I�. To simplify thefollowing description we will assume that such vertices will be assigned to either I+ or I� equiprobably.By symmetry, Prob[v 2 I is assigned to I+] = 1=2. Independence follows from the observation thatall edge capacities are independently distributed. An application of the Cherno� bound yields the desiredresult.It is clear that the transportation problem instances generated in the �rst stage satis�es all requirementsof the Undirected Transportation Theorem, with one exception. The number of sources (I+) and sinks (I�)in the transportation problem instance will not be equal. However, as we remarked earlier, the UndirectedTransportation Algorithm can be still be used provided the number of source and sinks is large enough.The bound from Lemma 3.5 shows that this is indeed the case.15
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4 A Directed Transportation AlgorithmWe now present an algorithm to solve certain instances of the transportation problem where the underlyinggraph is directed. In particular, we consider instances of the transportation problem satisfying the followingconditions.(a). the underlying graph G(S [ T;E) is complete and every edge is directed from S to T(b). jSj = jT j = n(c). the edge capacities are i.i.d. random variables drawn from the set f0; 1; . . .Kg, where K > 1 is someconstant(d). the expected value of the edge capacities is at least 1 + �, where � is a positive constant(e). the pair (a; b) is (D+ 1)-realizable, for some integer constant D > 0 to be speci�ed laterOnce again our assumptions about the supplies and demands are essentially the weakest possible. Sincethe expected edge capacity is close to 1, we obviously need that the pair (a; b) is realizable. Our requirementof (D+1)-realizability is only a slight weakening of that necessary condition. We could also have assumedthat the supplies and demands are chosen from some reasonable distribution, say a uniform distribution.It is not very hard to see that then the pair (a; b) would have been realizable with high probability. Ourresult is much stronger because we allow the supplies and demands to be arbitrarily chosen, subject to (e).We present an algorithm, the Directed Transportation Algorithm, which will solve such instances ofthe transportation problem with high probability. This leads to the following theorem,Theorem 4.1 (Directed Transportation Theorem) The Directed Transportation Algorithm �nds afeasible 
ow for transportation problem instances satisfying conditions (a)-(e) in linear time with probability1�O(n�
), for some constant 
 > 0.Before we describe the algorithm and prove the Directed Transportation Theorem we present twocombinatorial theorems which are useful in the analysis of the Directed Transportation Algorithm.4.1 A Combinatorial ProcessConsider the following combinatorial process. The state of the process is an arbitrary placement of nparticles, call them P = f1; 2; 3 . . .ng, on integer points of the real line. There may be more than oneparticle at a given position. The initial state has all n particles at the origin. A state transition is dividedinto two distinct steps. Let S be a subset of P such that jSj = 2k. The �rst step in a transition movesevery particle in S, for some arbitrary S, one position in the negative direction (say to the left). In thesecond step, the k leftmost particles are each moved two positions to the right (or in the positive direction).It can be shown that no particle will ever move out of the interval [�A logn; 2], where A is some positiveconstant. 16
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Let K be a positive integer and � a positive real number. Consider now the following generalizationof the combinatorial process. The de�nition of the state (as well as the initial state) of the process is asbefore. The �rst step of a transition, as before, moves all particles in S, for some arbitrary S, one stepeach to the left. The second step of the transition involves the choice of n arbitrary integers, fd1; d2; . . .dngsuch that Pnj=1 dj = jSj and 0 � di � K for each i. We will refer to the requirement that Pnj=1 dj = jSjas the balance constraint. It is also required that Ptj=1 dj � (1+ �)t for all t < t0, where t0 is the index ofthe rightmost non-zero di. This last condition will be referred to as the pre�x constraint. The second stepof a transition now moves the tth-leftmost particle dt positions to the right, for t = 1; 2; . . . ; t0.The conditions imposed on the second step of a transition ensure that the net rightward movement ofa group of t leftmost particles is larger than t. This constraint prevents any particle from straying too faraway to the left. The following theorem can be proved about the generalized process.Theorem 4.2 (Interval Theorem) All particles remain in the interval [�C log n;D] of the real line,where C = C(K; �) and D = D(K; �) are positive constants.The following notation and lemma will be required for the proof of this theorem. Let pi(�) denote thelocation of the ith particle after � transitions have taken place. The state of the process at time step �will be given by the set of locations, pi(�), occupied by the particles i, 1 � i � n. The main tool for theanalysis of this combinatorial process will be the following notion of the moment at an integer point onthe real line.De�nition 4.1 Let p be any integer point on the real line. The left moment at p at any time is the sumof the distances from p of all particles to the left of p on the real line.LM(p; �) =Xi max(p� pi(�); 0)In the following lemma, we will show that the moment satis�es an invariant inequality at each timestep. Using this invariant, we will be able to establish that no particle can move too far away from theorigin.Lemma 4.1 There exists A and � depending only on � and K such that,(a). A > 0 and 0 < � < 1, and(b). at each time step � and for each integer l, LM(l; �)� nA��l.Proof: The proof will be by induction on the time step � . We will assume that the lemma holds for alll at the time step � � 1, and prove it for all l at time step � . We will start by proving the induction step,and later show the base case, i.e. at time step 0. The value of the constants � and A will also be speci�edlater.Assume that the left moment at every integer position satis�es the required inequality at time step� � 1. We now show that it must satisfy the required inequality after the completion of the � th transition,17
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henceforth referred to as the current transition. Observe that it su�ces to prove the invariant for aparticular position l on the real line, without any loss of generality. Therefore, we are only required toshow that LM(l; �) � nA��l. The main idea of the proof is to bound the new moment at l by a positivelinear combination of the moments at the previous time step. To simplify our notation we will considereverything relative to this location l. We will use the following notation.Notation 4.1 � Let cell i denote the location l� i on the real line, where i � K � 1.� Let cell K denote all locations to the left of l� (K � 1).� Let Ai denote the number of particles in cell i, before the current transition.� Let ai denote the number of particles which were moved one unit to the left from cell i in the �rststage of the current transition.� Let �i denote the sum of the distances that particles from cell i were moved to the right in the secondstage of the current transition. Thus, �i = Pj2Si dj, where Si is the set of particles that resided incell i after the �rst stage of the current transition.� Let M(h) denote the moment at cell h before the current transition and M 0(h) denote the momentat cell h after the current transition. By de�nition, M(h) = LM(l� h; � � 1) and we have to provethat M 0(0) � nA��l.In general, we will only be interested in particles which lie at cell 0 or to its left. Whenever we refer toa particle at cell i it will be assumed that 0 � i � K, unless otherwise stated.The moment at cell h, �1 � h � K, before the current transition is given by the following equation.M(h) = M(K) + KXi=h+1 (i� h)Ai � nA��l+h (6)Let L denote the moment gained at cell 0 during the �rst stage of the current transition. Also, let R denotethe moment lost at cell 0 during the second stage of the current transition. Thus, we have that,M 0(0) = M(0) + L� R (7)Observe that each particle to the left of the cell 0 which was moved a unit to the left (in the �rst stageof the current transition) will contribute to the increase in the moment at cell 0. It is now easy to see thatL is given by the following equation. L = KXi=0 ai (8)Consider now a particle which was moved c positions to the right in the second stage of the currenttransition. It is possible that this particle ended up at a position to the right of cell 0. In that case, itscontribution to the decrease in the moment at cell 0 would be less than c. This complicates the computationof the value of R. However, we do know that a particle which was moved from cell i to a position to the18
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right of cell 0 will cause a decrease of i in the moment at cell 0. Further, it is known that a particle canmove at most K positions to the right in a single transition. This implies that the particles in cell i (beforethe second stage of the current transition) must cause a decrease of at least iK�i in the moment at cell 0.Thus, we have the following lower bound on the value of R.R � 1K KXi=1 i�i (9)It will be convenient to express the above lower bound on R in terms of Ai and ai. This can bedone as follows. Consider the rightmost particle which was moved to the right in the second stage of thecurrent transition. Let t denote the cell to which this particle belonged at the end of the �rst stage ofthe current transition. If cell t was to the right of cell 1 then set t = 1. It is clear that if t > 1 then�1 = �2 = . . . = �t�1 = 0. The balance constraint on this combinatorial process requires that the netleftward movement in the �rst stage of any transition be exactly equal to the net rightward movement inthe second stage of that transition. Therefore, we have the following inequality.KXi=t �i � KXi=0 ai (10)Note that this inequality need not be tight since there may be particles to the right of cell 0 which weremoved to the left in the �rst stage of the current transition. It is not very hard to see that the inequalityalso holds in the case where particles to the right of cell 0 were moved rightwards in the second stage.The number of particles at cell i and to its left after the �rst stage is ai�1 +PKj=iAj . We invoke thepre�x constraint on the transitions to derive the following inequality for t + 1 � i � K.KXj=i �j � (1 + �)(ai�1 + KXj=iAj) (11)We now use equations (9), (10) and (11) to derive the following lower bound on R, after some algebraicmanipulation. R � tK KXi=0 ai + 1 + �K K�1Xi=t ai + 1 + �K KXi=t+1 (i� t)Ai (12)We are now in a position to give an upper bound on the value of M 0(0). Substituting equations (6), (8)and (12) into (7) we obtain the following inequality.M 0(0) �M + KXi=1 iAi + �1� tK� KXi=0 ai � 1 + �K K�1Xi=t ai � 1 + �K KXi=t+1 (i� t)Ai (13)In order to show that this is bounded by nA��l we have to consider three di�erent cases.Case I [t = K] : In this case the RHS of inequality (13) turns out to be exactly M(0) and, thus, by theinduction hypothesis, M 0(0) �M(0) � nA��l. 19
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Case II [t = K � 1] : In this case inequality (13) can be seen to imply the following, using the fact that0 � ai � Ai. M 0(0) �M(K) + KXi=1 iAi + 1K K�2Xi=0 Ai � �KAKAt this point we invoke equation (6) and make use of the induction hypothesis to obtain the followingbound. M 0(0) � nA��l�1 ��1� 1K�+ �1� �K ��K + �K�K+1� = nA��l�1f(�)The last inequality completes the analysis of Case II provided f(�) � �. It can be shown that this isindeed the case provided � is su�ciently close to 1. To see this, it is enough to verify that the functiong(�), g(�) = f(�)� � = �1� 1K�+ �1� �K ��K + �K�K+1 � �is negative when � < 1, for � close enough to 1. This can be veri�ed by observing that g is continuous at1, g(1) = 0, and g0(1) is positive.Case III [1 � t � K � 2] : In this case inequality (13) can be seen to imply the following, using the factthat ai � Ai.M 0(0) � �1� 1K� M(K) + KXi=0 (i+ 1)Ai!+ � 1K � �K (K � t)� (M(K) +AK) + �K (K � t)M(K)At this point we invoke equation (6) and make use of the induction hypothesis to obtain the followingbound.M 0(0) � nA��l�1��1� 1K�+ � 1K � �K (K � t)��K + �K (K � t)�K+1� � nA��l�1� = nA��lThe last inequality also holds when � < 1, for � close enough to 1. This can be veri�ed in the same manneras in Case II.This concludes the proof of the induction step. Note that � is chosen to lie close enough to 1, so as tosatisfy all the inequalities derived above. Similarly, A will be chosen such that the base case is satis�ed.Base Case : In the initial state all particles were at the origin. This implies that, at time step 0, theleft moment at all integer points p � 0 were 0, thus trivially satisfying the invariant. The left momentat location p, for p > 0, is simply pn in the initial state. We choose A such that, for all p > 0, it is thecase that np � nA��p. Clearly, it must be the case that A � p�p. Such an A exists since the functionh(p) = p�p is bounded for p > 0.We are now ready to prove the Interval Theorem.20
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Proof: [Interval Theorem] We �rst show that no particle can move too far to the left. This may beveri�ed by considering the leftmost point on the real line which has a non-zero moment. Let pl < 0 be theleftmost point on the real line at which a particle may be placed in this combinatorial process. A particlein location pl contributes 1 to the left moment at pl + 1. Thus, we have the following inequalities.1 � LM(pl + 1) � nA��pl�1Therefore, it must be the case that pl � �C logn where C(K; �) is a positive constant.Now we show that a particle cannot move too far to the right. Let pr > 0 be the rightmost positionoccupied by a particle during this combinatorial process. Consider the �rst time a particle is moved ontothe position pr. Clearly, this particle must have previously occupied a position at or to the right of pr�K.The pre�x condition requires that there be at most n1+� particles to the left of a particle which is moved tothe right. This implies that there must be at least �n1+� particles at or to the right of the position pr �K.Therefore, there must be a right moment of at least (pr �K) �n1+� about the origin. It is easy to see that,due to the balance constraint, the right moment must be equal to the left moment at the origin at alltimes. The left moment at the origin is always less than nA. Thus, we get the following inequality.(pr �K) �n1 + � � nAThis means that pr � D, where D(K; �) is an appropriately chosen constant.4.2 A Generalization of the Mendelsohn-Dulmage TheoremMendelsohn and Dulmage [MD] proved the following theorem about bipartite graphs.Theorem 4.3 (Mendelsohn-Dulmage Theorem) Let G(S[T;E) be a bipartite graph and let M1 andM2 be two matchings in G. Then there exists a matching M3 � M1 [M2, such that M3 covers all thenodes of S covered by M1 and all the nodes of T covered by M2.The proof of this theorem is constructive and leads to an algorithm which runs in time O(jSj+ jT j).We generalize this theorem as follows. Let K be a �xed positive integer. By a K-matrix we mean a m� nmatrix whose entries are drawn from the set f0; 1; . . . ; KgTheorem 4.4 (Generalized Mendelsohn-Dulmage Theorem) LetM1 be aK-matrix whose row sums,a1i , and column sums, b1j , satisfy the following condition,lsi � a1i and b1j � utjSimilarly, let M2 be a K-matrix whose row sums, a2i , and column sums, b2j , satisfy the following condition,a2i � usi and ltj � b2jThen there exists a K-matrix M3 such that 21
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(a). the row and column sums of M3 satisfy the following conditionslsi � a3i � usiltj � b3j � utj(b). for each i, j we have M3ij � max(M1ij ;M2ij)Moreover, a matrix M3 satisfying the above conditions can be constructed in O(Kmn) time.Proof: First, observe that the only case we need to consider is where for each i, j we have min(M1ij ;M2ij) =0. If this is not the case then let D be the K-matrix where 8i; j, Dij = min(M1ij ;M2ij). Subtract D fromboth M1 and M2. Also, modify the upper and lower bounds on the rows (and columns) of M1, M2 bysubtracting the row-sums (and column-sums) of the matrix D. Clearly, a solution to the new problem,when added to D, gives a solution to the original problem involving M1 and M2.We now restrict our attention to the case where 8i; j, min(M1ij ;M2ij) = 0. Let ai = max(a1i ; a2i ) andbi = max(b1i ; b2i ), for all i; j. De�ne a vertex set S such that for each row i there are ai vertices s(i; 1),s(i; 2), . . ., s(i; ai). Similarly, de�ne the vertex set T such that for each column j there are bj vertices t(j; 1),t(j; 2), . . ., t(j; bj). We will construct matchings X1 and X2 on the bipartite vertex set S[T correspondingto the two matrices M1 and M2, respectively. We describe the construction of the matching X1 only. Theother matching, X2, can be constructed analogously.For each non-zero entry M1ij , introduce M1ij edges into X1 connecting vertices corresponding to row iwith vertices corresponding to column j. It is easy to ensure that each vertex in S [ T has at most oneedge incident on it. This process yields a matching of cardinality Pmi=1 a1i =Pnj=1 b1j .We now invoke the Mendelsohn-Dulmage Theorem to construct a third matching, X3 � X1[X2, whichcovers all the vertices in S covered by X1 and those in T covered by X2. To derive the matrixM3 from thematching X3, set the value of M3ij to be the number of edges in M3 which connect vertices correspondingto row i with those corresponding to column j.Clearly, the row-sums of M3 respect the upper bounds since the number of vertices corresponding toeach row do so. The row-sums ofM3 are seen to respect the lower bounds since the matching X3 covers atleast as many vertices of each row as the row-sums of M1. Similar reasoning shows that the column-sumsof M3 respect both the upper and lower bounds. This establishes condition (a) of the theorem.To verify the validity of condition (b), recall that min(M1ij ;M2ij) = 0. This implies that the number ofedges in X1[X2 connecting vertices corresponding to a row i with the vertices corresponding to a columnj is less than max(M1ij ;M2ij). Thus, the value of M3ij cannot exceed max(M1ij ;M2ij).Finally, note that the entire proof is constructive. Moreover, the construction described above requiresonly O(Kmn) time. This concludes the proof. 22
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4.3 The Directed Transportation AlgorithmThe key idea behind the Directed Transportation Algorithm can also be formulated in terms of the mimick-ing paradigm. We �rst set aside a small fraction of the edge capacities for the purposes of the Fine-TuningAlgorithm. Next, we construct the (D + 1)-realization of the supply/demand vectors. This correspondsto the solution of the deterministic relaxation of the probabilistic transportation problem. The solution tothe relaxed problem is then mimicked to obtain a partial solution to the original problem. The mimickingprocess is considerably more sophisticated then that used for the transportation problem. Finally, we usethe reserved capacity to �ne-tune the solution to obtain a feasible 
ow.We now present a brief outline of the mimicking process used by this algorithm. The mimicking processworks in a row-by-row fashion, i.e., the algorithm computes the 
ow matrix for the probabilistic instanceby mimicking in order the rows of the 
ow matrix for the deterministic instance. It is ensured that therow-sums of the solution created by this process are exactly equal to the desired values. Consider the stagewhere the �rst i � 1 rows have already been mimicked. This means that we have created a partial 
owmatrix for which the entries of the �rst i � 1 rows have already been determined. We now describe howthe entries of the ith row will be computed. At this point there may be a discrepancy in the column-sums(for the �rst i� 1 rows) between the deterministic and the mimicking solutions. Let Pj denote the excessof the jth partial column-sum in the mimicking solution over that in the deterministic solution. Whiledetermining the values for the ith row we will consider the columns in increasing order of discrepancy.The edges corresponding to the entries in row i are saturated until the desired row-sum is achieved. Thebehavior of the column discrepancies is analogous to the combinatorial process outlined earlier. To makethe analogy complete it will be necessary to introduce a certain amount of �ctitious capacity, as will beexplained later. Let � = 1=N , where N is a �xed positive integer such that 0 < � < �. Also, let D be theconstant D(K; �) determined by the Interval Theorem.The Directed Transportation AlgorithmStep (1). Set aside a small fraction of the edge capacities for use by the Fine-Tuning Algorithm. For eachedge with a non-zero capacity, ĉ(i; j), set aside one unit of capacity with probability � independentof the other edges, where 0 < � < � � �. Let the expected value of the new capacities, fc(i; j)g, be1 + �0; then � < �0.Step (2). [Deterministic Relaxation] Let a = (ai) and b = (bj) denote the supply and demand vectors,respectively. In linear time, construct the (D + 1)-realization of the pair (a; b). Let M = M(a0; b0)be the resulting matrix.Step (3). [Mimicking Process] Construct a 
ow X = (xij), row-by-row, such that Pnj=1 xij = a0i (foreach i) and Pir=1 xrj � Pir=1Mrj (for each j). The 
ow X can be constructed as follows. Supposewe are currently processing row i. Let Pj =Pi�1r=1 xrj �Pi�1r=1Mrj , for each column j, where Pj = 0if i = 1.Step (3.1). Pj  Pj �Mij , for each j. 23
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Step (3.2). Let c1, c2, . . ., cn denote the capacities of edges going from source i to the sinks inincreasing order of Pj . Increase these capacities from cl to c0l so as to ensure that Ptl=1 c0l �(1+ �)t and that ck 2 [0; K], for each t, k. This may be done by choosing c0l to be maxfcl; [(1+�)l�Pl�1k=1 c0k]g. The extra capacity introduced in this fashion will called the �ctitious capacity.Let Ui denote the amount of �ctitious capacity required for row i; i.e. Ui =Pl (c0l � cl).Step (3.3). Send out a0i units of 
ow out of source i by considering the edges in increasing order ofPj . Send out c0j units of 
ow along the jth such edge, until a total of a0i units of 
ow have beenshipped out. It may be observed that, due to the introduction of the �ctitious capacities, the
ow along an edge may exceed the actual capacity. Let xij denote the 
ow sent along the edge(i; j).Step (3.4). Pj  Pj + xij , for each j.Step (4). Repeat the mimicking process of Step (3) with the roles of the rows and columns interchanged.In other words, construct a 
ow by mimicking the deterministic solution in a column-by-columnfashion, using row discrepancies and introducing �ctitious capacities as in Step (3). Let Y be the
ow obtained in this manner. Also, let Vj denote the total amount of �ctitious capacity introducedin column j.Step (5). Construct a 
ow X 0 which satis�es all capacity constraints by appropriately reducing the 
owX along edges with �ctitious capacities. Similarly, construct a 
ow Y 0 from the 
ow Y .Step (6). Consider the two K-matrices X 0 and Y 0. Using the Generalized Mendelsohn-Dulmage algo-rithm, compute a third K-matrix Z such that the row- and column-sums of Z satisfy the boundssatis�ed by the row- and column-sums of X 0 and Y 0. The Generalized Mendelsohn-Dulmage algo-rithm ensures that each entry of Z matrix is no more than the larger of the corresponding entries inthe X 0 and Y 0 matrices and hence no more than the corresponding edge's capacity.Step (7). [Fine Tuning] Let �a and �b denote the row and column sum vectors for the 
ow matrix Z. InStep (1) the capacity set aside for each edge (i; j) was ĉ(i; j)� c(i; j). Using these capacities andthe Fine-Tuning Algorithm, construct a 
ow Z 0 with supply and demand vectors (a� �a) and (b��b),respectively. The sum of the two 
ows, Z and Z 0, is a feasible 
ow for the transportation probleminstance under consideration.4.4 Analysis of the Directed Transportation AlgorithmThe proof of the Directed Transportation Theorem will be presented via the following lemmata. But,�rst, observe that the algorithm runs in linear time since each step requires at most O(n2) operations, andthe size of input is 
(n2). We now proceed to show that each step of the algorithm succeeds with highprobability.Lemma 4.2 At the end of Step (1), the remaining capacities have expected value at least 1+ �0 = 1+ ���.24
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Proof: Consider an edge (i; j). The original capacity of this edge is c(i; j) and the capacity at the endof Step (1) is ĉ(i; j). Let pk = Prob[edge (i; j) has c(i; j) = k], for each k 2 [0; K]. Then we have thefollowing bound. Exp[ĉ(i; j)] = KXk=1 pk[�(k� 1) + (1� �)k] � Exp[c(i; j)]� � � 1 + �� �A generalized random walk analysis yields the following bounds on the amount of �ctitious capacityintroduced by the algorithm.Lemma 4.3 For all 
 > 0, there exists s > 0 such that maxi Ui � s logn with probability 1�O(n�
).Proof: We make use of the analysis of a generalized one-dimensional random walk [Fe] to prove thisresult. Consider the following random walk process. The particle is initially at some integral positionz > 0. The rth step is given by the random variable Xr which takes only integral values. Let Sr denote theposition of the particle after r steps. Then, S0 = z and St = Ptr=1Xr + z for t > 0. Let uz(a) denote theprobability of the particle going to a position � 0 before it goes to a position � a, for some �xed integera > z.Suppose the following conditions hold,(a). (Xr) are i.i.d. random variables(b). m = Exp[X1] > 0(c). Xr 2 [��; �], where �, � are positive integersIt can be shown [Fe, pp. 363-366] that uz(a) � �a+��1 � �z�a+��1 � 1where � is the unique positive root (other than 1) of the characteristic function of the probability distri-bution of Xr. It can be shown that 0 < � < 1 when m > 0. Note that � is a constant which only dependson the distribution of (Xr).Consider now the �ctitious capacity introduced for row i in Step (3.2). Let Ui(t) = (1+ �)t�Ptr=1 cr,then Ui = maxt Ui(t). Recall that � = 1=N where N is a positive integer such that 0 < 1=N < �0. We wantto show that Ui cannot be too large.Let us relate the �ctitious capacity to the random walk as follows. Let Xr = Ncr � (N + 1). We nowhave that St = �NUi(t)+z; here z is the initial position for the random walk which will be speci�ed later.Since the random variables (cr) are drawn from the set f0; 1; 2; . . . ; Kg and Exp[cr] = 1 + �0, we have,(a). Xr 2 fNd� (N + 1) : d 2 f0; 1; 2; . . . ; Kg g 25
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(b). Exp[Xr] = �0N � 1 > 0(c). � = �(N + 1), � = N(K � 1)� 1Suppose we select a = n+ z and z = k logn, for some constant k > 0. Now, uz(a) was de�ned as beingthe probability that the value of St falls below 0 before it has ever risen above a. Equivalently, it is theprobability that the value of Ui rises above zN before it has ever fallen below �(a�z)N . Clearly, the value ofUi can never fall below �(a�z)N unless Ptr=1 cr � n � a0i. The processing of the row is over if n units of 
owhave been shipped out. This establishes that uz(a) is the probability that Ui is greater than k lognN . Wenow have, Prob �Ui > kN logn� = uz(a) � �a+��1 � �z�a+��1 � 1 � �zSumming the probability of failure over all n rows and given that 0 < � < 1, we have for some 
 > 0,Prob �maxi Ui � kN logn� = 1� O(n�
)The proof of the next lemma is identical.Lemma 4.4 For all 
 > 0, there exists s > 0 such that maxj Vj � s logn with probability 1� O(n�
).Consider now the 
ow X constructed in Step (4). Since we used a certain amount of �ctitious capacity,the actual 
ow X 0 is slightly less than X . The next lemma gives bounds on the amount of actual 
owleaving a source as well as the actual 
ow entering a sink.Lemma 4.5 Consider the 
ow matrix X 0. The ith row-sum of X 0 (the net 
ow out of source i) is ai �Ui � (D+ 1), while the jth column sum of X 0 (the net 
ow into sink j) is less than bj � 1.Proof: We draw an analogy between the construction of the 
ow X and the combinatorial processdescribed earlier. The value of Pj , after the processing of row i� 1, corresponds to the position of particlej after i � 1 state transitions. The set fjjMij = 1g corresponds to the set S arbitrarily chosen for theith state transition. The 
ow xij routed to the column j with the tth smallest Pj corresponds to thedistance dt moved by the tth leftmost particle. The use of �ctitious capacities ensures that, for each t,Ptk=1 ck0 � (1 + �)t as required by the combinatorial process.It follows that the net actual 
ow out of source i is exactly a0i �Ui = ai �Ui � (D+ 1). We know thatthe net 
ow sent into sink j is b0j + Pj . Invoking the Interval Theorem, we have that Pj � D. It followsthat the net actual 
ow into sink j is no more than b0j +D = bj � 1.The proof of the following lemma is similar to that of Lemma 4.5.Lemma 4.6 Consider the 
ow matrix Y 0. The ith row-sum of Y 0 (the net 
ow out of source i) is at mostai � 1, while the jth column sum of Y 0 (the net 
ow into sink j) is exactly b0j � Vj = bj � Vj � (D + 1).26
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Lemma 4.5, Lemma 4.6 and the Generalized Mendelsohn-Dulmage Theorem together give us the fol-lowing lemma.Lemma 4.7 Consider the 
ow matrix Z(�a;�b) constructed in Step (6). It satis�es the following conditions,ai � Ui � (D+ 1) � �ai � ai � 1; 8ibj � Vj � (D + 1) � �bj � bj � 1; 8jTo complete the proof of the Directed Transportation Theorem we need to show that Step (7) succeedswith high probability.Lemma 4.8 The Fine-Tuning Algorithm succeeds in Step (7) with probability 1� O(n�
), for some con-stant 
 > 0.Proof: From Lemma 4.3, Lemma 4.4 and Lemma 4.7 we have,1 � ai � a0i = O(logn); 8i1 � bj � b0j = O(logn); 8jIn Step (1) we set aside a certain fraction of the edge capacities. The reserved capacity for an edge(i; j) is 1 with probability at least �=K, which is �xed independent of n; the reserved capacity of an edgeis 0 with probability at most 1� (�=K). Moreover, the algorithm sets aside the capacities independentlyfor each edge. For each supply or demand in the residual problem, the lower bound is L(n) = 1 and theupper bound is U(n) = O(logn). It is clear that the residual problem at this stage completely satis�es therequirements of the Fine-Tuning Theorem. The Fine-Tuning Algorithm is now applicable to the suppliesa� �a and the demands b� �b.4.5 Application to the Directed Max-Flow ProblemWe now apply the Directed Transportation Theorem to the solution of a probabilistic version of the directedmax-
ow problem. Consider the instances of the max-
ow problem where the underlying graph is directedand the following conditions are satis�ed.(a). S = fsg, T = ftg and I = f1; 2; . . . ; ng(b). 8i 2 I , c(s; i) = ai and c(i; t) = bj(c). 8i; j 2 I , where i 6= j, the capacities c(i; j) are i.i.d. random variables drawn from the set f0; 1; 2; . . . ; Kgwith expectation at least 1 + �, where � > 0(d). The pair (a; b) is (D + 1;1)-realizable for some constant D > 027
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Observe that our assumption (d) is weaker than assuming that (a; b) is (D + 1)-realizable. We willexhibit a linear time reduction from such instances of the max-
ow problem to instances of the directedtransportation problem satisfying the conditions for the Directed Transportation Theorem. This leads toa linear time algorithm for the max-
ow problem and proves the following,Theorem 4.5 (Directed Max-Flow Min-Cut Theorem) Let I be an instance of the directed max-
ow problem satisfying conditions (a)-(d). With high probability, the cut consisting of all edges leading outof the source (or into the sink) is a minimum cut. Moreover, there exists a linear time algorithm to �nd amaximum 
ow in I, with high probability of success.We now specify the linear time reduction which will prove the above theorem. Let I be an instanceof the max-
ow problem satisfying conditions (a)-(d). We will reduce I to an instance C of the directedtransportation problem. Construct a directed bipartite graph B as follows. Let S 0 = fs1; s2; . . . ; sng andT 0 = ft1; t2; . . . ; tng denote the bipartite vertex set for B. Associate with each source vertex si the supplyai and with each sink vertex tj associate the demand bj . Every edge (si; tj) is present and all edges aredirected from S 0 to T 0. Let c(si; tj) = c(i; j) for i 6= j. We choose c(si; ti) = 1, for each i. It is now easyto see that a feasible 
ow for C can always be transformed (in linear time) to a feasible 
ow for I whichsaturates all edges leading out of s. Clearly, this would be a maximum 
ow for I .To apply the Directed Transportation Algorithm to the instance C, we must make a small modi�cationin Step (2). We �rst construct a (D + 1;1)-realization of (a; b) instead of the (D + 1)-realization. Noticethat this does not e�ect the rest of the algorithm or its analysis, provided we ignore the \diagonal" edges inthe remaining steps of the algorithm. The Directed Transportation Theorem, when applied to C, impliesthat C is almost surely feasible. Since the Directed Transportation Algorithm will almost surely �nd afeasible 
ow for C, we can now derive, in linear time, a maximum 
ow for I .5 Further WorkGeneralizations of current results: The results presented above could be extended in many directions.It would be interesting to consider di�erent distributions for the edge capacities. We could also look atthe case of sparse graphs, i.e. graphs where the probability of an edge, p(n), is small. Another possibilityis to consider instances of the directed transportation problem where K = K(n) and � = �(n), where theformer goes to in�nity with n while the latter goes to zero as n approaches in�nity.Large Diameter Graphs: It has been empirically observed that most network 
ow algorithms tend tohave their worst performance on graphs of large diameter. It would be interesting to consider 
ows onrandom graphs which have large diameters. This could be done by considering sparse graphs or randomlayered graphs where the diameter can be increased by increasing the number of layers of vertices.Mimicking Deterministic Solutions: It should be possible to apply this technique to other problems.In particular, we might consider probabilistic instances of Multi-commodity Flow problems as a naturalextension of the problems considered above. Another possibility is the Minimum-Cost Flow problem. Ofcourse, there is no reason why this technique should work only for 
ow problems.28
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